2665-7958

Higher Plant Cell Respiration

Edited by R. Douce and D.A. Day

Contributors

ъĴ

T.ap Rees M. Chauveau S. Delorme P. Dizengremel I.B. Dry G. Ducet G.E. Edwards D. Falconet P. Gardeström J.B. Hanson J.L. Harwood H. Lambers C. Lance B. Lejeune C.A. Mannella A.L. Moore M. Neuburger J.M. Palmer F. Quétier P.R. Rich M. Steup M. Stitt J.A. Ward J.T. Wiskich

With a Foreword by H. Beevers

Springer-Verlag Berlin Heidelberg NewYork Tokyo

Introduction

۰.

D.A. DAY and R. DOUCE (With 1 Figure)							•	•		•							1
---------------------------------------	--	--	--	--	--	--	---	---	--	---	--	--	--	--	--	--	---

1 Preparation of Plant Mitochondria, Criteria for Assessement of Mitochondrial Integrity and Purity, Survival in Vitro M. NEUBURGER (With 8 Figures)

1	Introduction
2	General Considerations for the Isolation of Intact Mitochondria
3	Large-Scale Preparation of Washed Mitochondria
	3.1 Reagents
	3.2 Procedure for Potato Tuber Mitochondria
4	Assessment of Mitochondrial Integrity
	4.1 Spectrophotometric Assay for Succinate: Cytochrome c Oxidoreductase 10
	4.2 KCN-Sensitive-Ascorbate-Cytochrome c-Dependent O ₂ Uptake 11
5	Control of Mitochondrial Purity
6	Purification of Plant Mitochondria
	6.1 Purification on Sucrose Gradients
	6.2 Purification on Percoll Gradients
	6.2.1 Purification of Mitochondria from Potato Tubers
	6.2.2 Purification of Mitochondria from Pea Leaves
	6.2.3 Properties of Percoll-Purified Mitochondria
7	Concluding Remarks
Re	ferences

2 Molecular Organization and Expression of the Mitochondrial Genome of Higher Plants - n--auto a pr

F. QUETIER, B. LEJEUNE, S. DELORME, and D. FALCONET (With 3 Figures)	,
1 Introduction	
2 Physicochemical Characterization	
2.1 Buoyant Density and Melting Point	
2.2 Direct Observation of mtDNA Molecules by Electron Microscopy	
2.3 Cot Curves and Kinetic Complexity	• • •
2.4 Detection of Discrete Circular mtDNA Molecules by Gel Electropho	oresis
3 Restriction Analysis and Molecular Cloning	
3.1 Restriction Patterns	
3.2 Molecular Cloning	
3.3 Physical Map(s) of mtDNA	
4 Identified Mitochondrial Genes	
4.1 rRNA Genes	
4.2 tRNA Genes	
4.3 Protein Genes	
5 Concluding Remarks	
References	

ч.

3 Plant Mitochondrial Lipids: Structure, Function and Biosynthesis J.L. HARWOOD (With 9 Figures) 1 Introduction to Lipid Structures

1	Introduction to Lipid Structures							37
$\hat{2}$	Composition of Mitochondrial Membranes							
-	2.1 Content of Acyl and Other Lipids							
	2.2 Comparison with Other Plant Membranes							
3	Metabolism							
-	3.1 Sources of Precursors for Lipid Synthesis							
	3.2 Mitochondrial Phospholipid Synthesis .							
	3.3 Degradative Enzymes							
4	Functional Aspects of Lipids							
	4.1 Membrane Structure and Function							56
	4.2 Changes in Mitochondrial Lipids							60
5	Conclusion							
Re	eferences							64

4 Plant Mitochondrial Cytochromes G. DUCET (With 2 Figures)

1	Introduction
2	Cytochrome Estimation
3	Mitochondrial Cytochromes in Higher Plants
	3.1 The c Cytochromes
	3.1.1 Cytochrome c
	3.1.2 Cytochrome c_1
	3.2 The b Cytochromes
	3.2.1 The Various Cytochromes b
	3.2.2 The Cytochrome b– c_1 Complex
	3.2.3 Cytochromes b of the External Mitochondrial Membrane 86
	3.3 The a Cytochromes
4	
	al Cytochromes
5	Miscellany
6	Cytochromes in the Respiratory Chain of Higher Plant Mitochondria 96
Re	eferences

5 The Outer Membrane of Plant Mitochondria

Circ. MARINELLA (With 10 1 Iguida	C.A. 1	Mannella	(With	10	Figures
-----------------------------------	--------	----------	-------	----	---------

1 2	Perspective	•	•	106
3	Lipid Composition of the Mitochondrial Outer Membrane			
	3.1 Lipid Classes			110
	3.2 Fatty Acid Composition: Temperature Modulation			111
	3.3 Lipid Phase Transitions			
4	Enzymes of the Mitochondrial Outer Membrane			114
	4.1 The NADH: Cytochrome c Oxidoreductase System			114
	4.1.1 Possible Functions of the Outer Membrane Redox Chain			116
5				
	5.1 Structural Evidence for the Existence of Pores			
	5.2 Trypsin-Insensitive Polypeptides of the Plant Membrane			
	5.3 The Pore-Forming Polypeptides			
	5.4 Structure and Function of the Channels			123
	5.4.1 Model from X-ray Diffraction			
	5.4.2 Structure from Electron Microscopy			
	5.4.3 Mechanism of Ion Selectivity			
	5.5 Speculation on a Regulatory Role for Outer Membrane Channels			
Re	eferences			
- 1/6			•	140

VIII

6	0 A	rganization of the Respiratory Chain and Oxidative Phosphorylation .L. MOORE and P.R. RICH (With 7 Figures)
	1	Introduction
	2	Organization of Respiratory Components
		2.1 The Basic Functional Units
		2.1.1 Complex I, NADH Dehydrogenase
		2.1.2 Complex II, Succinate Dehydrogenase
		2.1.3 Complex III, the Cytochrome bc_1 Complex
		2.1.4 Complex IV, Cytochrome Oxidase
		2.1.5 The Alternative Oxidase
		2.1.6 The External NADH Dehydrogenase
	3	Connection Between the Functional Units
		3.1 The Sidedness of the Reactions of the Alternative Oxidase, Succinate
		Dehydrogenase and the External NADH Dehydrogenase 144
		3.2 The Role of Ubiquinone as a Mobile Redox "Pool"
		3.2.1 Mobility Between Components
		3.2.2 The Role of Ubiquinone in Providing Mobility
		3.2.3 The Relation of the Quinone Pool to Control of Electron Flow
		Through the Cytochrome and Alternative Oxidases
		3.3 Some Instances Where Ideal Q-Pool Behaviour Is Not Observed 148
	4	Oxidative Phosphorylation
		4.1 Background
		4.2 Proton Electrochemical Gradient
		4.2.1 Steady-State Ion Distribution
		4.2.2 Spectroscopic Probes
		4.2.3 Ion-Specific Electrodes
		4.2.4 Magnitude of Δp and its Response to the Metabolic State 155
		4.3 Mechanism for Generating Δp
		4.3.1 H ⁺ /O Ratios
		4.3.2 H ⁺ /Site Ratios
		4.3.3 H ⁺ /ATP Ratios
		4.4 Thermodynamic Competence of Δp
		4.5 Is Δp an Obligate Intermediate?
	Re	eferences

7 The Oxidation of NADH by Plant Mitochondria J.M. PALMER and J.A. WARD

.M. PALMER and J	.A.	WARD
------------------	-----	------

1	Introduction	13
2	NADH Dehydrogenases Oxidizing Exogenous NADH	50
	2.1 The Outer Membrane NADH Dehydrogenase	30
	2.2 The Inner Membrane NADH Dehydrogenase	32
	2.2.1 Location of the Dehydrogenase	
	2.2.2 Nature of the Redox Components and Relationship with the Re-	
	spiratory Chain	33
	2.2.3 Inhibitors of the External Dehydrogenase	35
	2.2.4 Specificity of the External NADH Dehydrogenase for the Nicotin-	
	amide Adenine Dinucleotide	36
	2.2.5 Regulation of Electron Flux Through the External NADH Dehy-	
	drogenase	38
	2.2.6 The Physiological Significance of Regulation of the NADH Dehy-	
	drogenase) 0
3	NADH Dehydrogenases Oxidizing Endogenous NADH	90
	3.1 Rotenone-Sensitive Oxidation of Endogenous NADH	
	3.1.1 Redox Components Associated with the Dehydrogenase 19	
	3.1.2 Regulation of Electron Flow Through the Rotenone-Sensitive De-	
	hydrogenase) 2

	e Cyanide-Resistant Pathway of Plant Mitochondria Lance, M. CHAUVEAU, and P. DIZENGREMEL (With 10 Figures)
1	Introduction
2	The Measure of Cyanide Resistance
3 4	The Dependence on Respiratory Substrates
4	4.1 Inhibitors of the Flavoprotein Pathway
	4.2 Inhibitors of the Cytochrome Pathway
	4.3 Inhibitors of the Alternative Pathway
	4.4 Interactions Between Inhibitors
5	The Link with Energy Transduction
2	5.1 Oxidative Phosphorylation
	5.2 Membrane Potential and Proton Gradient
6	The Structure of the Alternative Pathway
	6.1 Branch Point of the Alternative Pathway
	6.2 Other Components
7	The Functional Organization of the Alternative Pathway
	7.1 Topographical Organization
	7.2 Compartmentation
	7.2.1 Ubiquinone
	7.2.2 Pyridine Nucleotides
	7.3 Organization of the Alternative Pathway
8	The Alternative Pathway Oxidase
	8.1 Flavoprotein Hypothesis
	8.2 Excess Oxidase Hypothesis
	8.3 Cytochrome b_7 Hypothesis
	8.4 Nonheme Iron Protein Hypothesis
	8.5 Ubiquinone (Q-Cycle) Hypothesis
	8.6 Quinol Oxidase Hypothesis
	8.7 Lipoxygenase Hypothesis
	8.9 Conclusions
9	The Distribution of Electrons Between the Two Pathways
,	9.1 Some Definitions and Remarks
	9.2 Distribution of Electrons Between Pathways
	9.2.1 Bahr and Bonner's Method
	9.2.2 De Troostembergh and Nyns's Method
	9.2.3 ADP/O Ratio Method
	9.3 Mechanism of Electron Distribution
10	The Biogenesis of the Alternative Pathway
11	The Significance of the Alternative Pathway

9 Membrane Transport Systems of Plant Mitochondria J.B. HANSON (With 5 Figures)

1	Introduction											248
2	Structural and Osmotic Properties .											249
3	Techniques of Measuring Transport		•	·				•				252

Х

~

4	Transport of Inorganic Ions and Acetate
	4.1 Background
	4.2 Mechanisms of Passive Transport
	4.3 Energy-Linked Transport
	4.3.1 Salt Efflux
	4.3.2 Salt Influx
5	Transport of Organic Metabolites and Cofactors
	5.1 General Characteristics
	5.2 Monocarboxylate Transport
	5.3 Dicarboxylate Transport
	5.4 Tricarboxylate Transport
	5.5 Amino Acid Transport
	5.6 Nucleotide Transport
6	Conclusions
Re	eferences

10 The Tricarboxylic Acid Cycle in Plant Mitochondria: Its Operation and **Regulation** J.T. WISKICH and I.B. DRY (With 8 Figures)

1	Introduction	31
2	Control	32
	2.1 Adenylate Enery	
	2.2 Substrate Supply	
	2.3 Enzyme Activity	
	2.3.1 Enzyme Turnover	
	2.3.2 Pyruvate Dehydrogenase	
	2.3.3 Citrate Synthase	
	2.3.4 Isocitrate Dehydrogenase	
	2.3.5 Oxoglutarate Dehydrogenase	
	2.3.6 Succinyl Coenzyme A Synthetase	
	2.3.7 Succinate Dehydrogenase	
	2.3.8 Fumarase	
	2.3.9 Malate Dehydrogenase and Malic Enzyme	
3	Fatty Acid Oxidation	
	3.1 Glyoxysome – Mitochondria Interactions	
4		00
5	Glycine Oxidation)3
6	Physiological Control of the TCA Cycle	07
7		38
Re		98
6 7	Physiological Control of the TCA Cycle	0 08

11 Leaf Mitochondria $(C_3 + C_4 + CAM)$ P. GARDESTRÖM and G.E. EDWARDS (With 3 Figures)

Ρ.	GARDESTROM and G.E. EDWARDS (with 5 Figures)	
1	Introduction	314
2	Effects of Light on Dark Respiration	314
3	Preparation of Leaf Mitochondria	316
	3.1 Introduction	316
	3.2 Development of Preparation Procedures	
	3.2.1 \tilde{C}_3 Plants	317
	3.2.2 CAM Plants	319
	3.2.3 C_4 Plants	319
4	Properties of Isolated Leaf Mitochondria	320
	4.1 Purity and Intactness	320
	4.2 Composition	321

	5	Special Functions of Leaf Mitochondria – Role in Photorespiration 5.1 Photorespiration 5.2 Transport of Photorespiratory Metabolites 5.3 Glycine Decarboxylase 5.4 Serine Hydroxymethyltransferase 5.5 Assay Methods for Glycine Decarboxylase 5.6 Inhibition of Glycine Metabolism 5.7 Reoxidation of Glycine Oxidation 5.8 Regulation of Glycine Oxidation 5.9 Ammonia Refixation	 322 324 325 326 326 327 327 328
	6 Re	 Special Functions of Leaf Mitochondria – Role Relative to Decarboxylations in the C₄ Cycle 6.1 Introduction 6.2 PEP-Carboxykinase Types 6.3 NADP-Malic Enzyme Types 6.4 NAD-Malic Enzyme Types 6.4.1 NAD-Malic Enzyme – A Mitochondrial Enzyme 6.4.2 Properties of NAD-Malic Enzyme 6.4.3 Function in NAD-ME Type C₄ Plants 6.4 Function in ME Type CAM Plants 6.5 Transport in Mitochondria Relative to C₄ and CAM Photosynthesis 6.6 Abundance and Ultrastructure of Mitochondria Relative to C₄ Photosynthesis efferences 	 330 330 331 331 331 331 332 333 335 338 339
12	Sta M.	arch and Sucrose Degradation . STITT and M. STEUP (With 5 Figures)	
	1 2 3 4	Introduction Properties of Starch and Sucrose 2.1 Starch 2.2 Sucrose Degradation of Starch and Sucrose Relation Between Carbohydrate Mobilization and Respiration in Various	349 349 349 350
	T	 Plant Tissues 4.1 Tissues Having a High Respiratory Carbohydrate Consumption 4.1.1 Tissues Where Starch is Almost Completely Respired to CO₂ 4.1.2 Cell Culture and Callus 	354 354 354

		555
	4.1.3 Root Differentiation	355
	4.2 Tissues Where Sucrose is Metabolized but Diverted to an Increasing	
	Extent into Storage Products	356
	4.2.1 Development of Lipid-Storing Seeds	356
	4.2.2 Starch-Storing Tubers and Seeds	357
	4.2.3 Storage of Sugar in Root Tubers	358
	4.3 Tissues in Which Starch is Being Mobilized Primarily for Conversion	
	to Sucrose	359
	4.4 Photosynthetic Tissues with a Rapid Alteration Between Synthesis and	
	Mobilization of Carbohydrate	359
	4.4.1 Photosynthetic Metabolism	
	4.4.2 Sucrose Degradation	
	4.4.3 Starch Degradation	362
	4.4.4 Carbohydrate Mobilization in CAM Plants	364
5	General Features of the Control of Carbohydrate Respiration	365
	5.1 Control of Mobilization	365
	5.1.1 Coarse Control of Enzymes	365
	5.1.2 Multiple Forms of Enzymes	367
	5.1.3 Compartmentation of Starch	
	5.1.4 Compartmentation of Sucrose	

5.1.5	Fine Control of Enzymes
	5.1.5.1 Starch
	5.1.5.2 Sucrose
5.2 Contr	rol of the Utilization of Hexose P
	Coarse Control of Hexose Phosphate Metabolism
5.2.2	Hexose Phosphate Metabolism and Compartmentation 372
5.2.3	Fine Control of Hexose Phosphate Metabolism
	5.2.3.1 Phosphofructokinase
	5.2.3.2 Fructose 2,6-Bisphosphate
	5.2.3.3 Pyrophosphate: Fructose 6-phosphate Phosphotransfer-
	ase
	5.2.3.4 Pyrophosphate
	5.2.3.5 Nonrespiratory Use of Hexose Phosphate
5.2.4	A Possible Integration of Pathways
References	
The Organi	zation of Glycolysis and the Oxidative Pentose Phosphate

.... **T**22

L8	ithway in Plants
T.	AP REES (With 4 Figures)
1	Introduction
2	Reactions of Glycolysis
	2.1 Enzymes of Glycolysis
	2.2 Pyrophosphate: Fructose 6-Phosphate 1-Phosphotransferase
3	Reactions of the Oxidative Pentose Phosphate Pathway
	3.1 Enzymes of the Pathway
	3.2 The Nonoxidative Reactions of the Pathway
4	Location and Inter-relationship of Glycolysis and the Oxidative Pentose
	Phosphate Pathway
	4.1 Carbohydrate Oxidation in the Cytosol
	4.2 Carbohydrate Oxidation in Plastids
	4.2.1 Chloroplasts
	4.2.2 Plastids Involved in Massive Synthesis of Fat
	4.2.3 Other Plastids
D۶	eferences

14 Respiration in Intact Plants and Tissues: Its Regulation and Dependence on Environmental Factors, Metabolism and Invaded Organisms H. LAMBERS (With 6 Figures)

1	Introduction
2	Respiration Associated with Growth, Maintenance and Ion Uptake 419
	2.1 Is There a Justification for the Concept of Growth Respiration? 419
	2.1.1 Definitions and Basic Assumptions
	2.1.2 Experimental Approaches
	2.1.3 Experimentally Derived Values for Y_G and Y_{EG} Compared with
	Theoretical Values
	2.1.4 Some Experimentally Derived Values and Their Significance 424
	2.1.5 Summarizing Remarks
	2.2 Respiration as an Aspect of the C-Economy of a Plant
3	Cyanide-Resistant Respiration: Its Distribution and Physiological
	Significance
	3.1 Cyanide-Resistant Respiration in Vivo: Some Methodological Aspects 42'
	3.1.1 Cyanide-Resistant Oxygen Uptake
	3.1.2 Cyanide-Sensitive Oxygen Uptake
	3.1.3 SHAM-Sensitive Oxygen Uptake
	3.1.4 The Determination of the Activity of the Alternative Path 430

 3.2 Cyanide-Resistant Respiration and Heat Production	433 434 435 437
 4 Regulatory Aspects of Respiration in Vivo 4.1 The Regulation of the Activity of the Cytochrome and the Alternative Pathways 4.2 The Regulation of Glycolysis 4.3 Regulation by the Concentration or Supply of Respiratory Substrates 4.4 Toward a Model of the Regulation of Respiration by Substrates and Adenylates 	438 438 441 442
5 Respiration and Its Relation to Other Aspects of Metabolism	446 446 447
 6 Respiration and Its Dependence on Environmental Factors 6.1 Effects of Light 6.1.1 Leaf Respiration After a Period of Photosynthesis 6.1.2 Respiration as Affected by Light Intensity During Growth 6.1.3 Respiration as Affected by the Integrated Level of Radiation 	447 448 448 449 450
 6.1.4 Further Remarks on Effects of Light 6.2 Effects of Temperature 6.2.1 The Q₁₀ of Respiration 6.2.2 Transient Effects of Temperature on Respiration 6.2.3 Effects of Chilling 6.2.4 Effects of Supra-Optimal Temperatures 6.2.5 Temperature as an Ecological Factor 	451 451 451 452 453 454
 6.3 Effects of Salinity and Water Stress 6.4 Mineral Nutrition 7 Respiration and Its Relation to Yield and the Plasticity of the Individual 7.1 The Negative Correlation Between Respiration and Yield or Growth 	455 456 457
Rate 7.2 Are There Penalties, Associated with Slow Respiration Lines? 8 Developmental Aspects 8.1 Germination 8.1 Germination 8.2 Root and Leaf Development	459 460 460 461
 8.3 Senescence 8.4 Fruit Ripening 9 Host-Parasite and Symbiotic Associations 9.1 Host-Parasite Associations 9.2 Symbiotic Systems 	462 462
9.2 Symbolic Systems 10 Concluding Remarks 10 Concluding Remarks References	464
Author Index	
Subject Index	311