Nai-Ta Ming

New Theory of real numbers especially regarding "infinite" and "zero"

Verlag Dr. Kovač

Introduction						
	Notes for introduction					
I.A.	Nev	v idea	a of real number	9		
1.	New foundation of real number					
	1.1	Defi	inition of "infinite", "finite" (separated again into			
		"nor	mal" and "zero") real number	9		
		Note	es for 1.1	13		
	1.2	Exte	ending "zero finite" and "infinite" ordinal real number of			
		high	er order in δ -system	17		
		Note	es for 1.2	22		
2.	Construction of a set of "normal finite ordinal real numbers"					
	of δ	-syst	em	25		
	2.1	Gen	eral principle	26		
		Note	es for 2.1	28		
	2.2	Real	l number on ultralfilter (D) basis	31		
	Notes for 2.2					
	2.3	Real	l number on power set (\wp) basis	41		
		Note	es for 2.3	49		
3.	Practical determination of a set of ordinal real numbers					
	of δ -system with examples					
	3.1	Dete	ermination of D_i , the subset of D	53		
		1)	Schematic process	53		
		2)	Mathematical rules for construction of real numbers			
			in δ -system	55		
		3)	Summarizing these mathematical rules	62		
		4)	Applying schematic processs to find D_i with example	64		

Notes for 3.1

		Notes for 3.1	72		
	3.2	Examples for set of "normal positive finite ordinary real			
	~	numbers" of δ -system			
		1) Example for $\delta = 1$ to find $r_{i\delta} \in \mu(D)\delta$			
		2) Example for $\delta = 2$ to find $r_{i\delta} \in \mu(D)_{\delta}$			
		3) Example for $\delta = 3$ to find $r_{i\delta} \in \mu(D)_{\delta}$	83		
	3.3	Examples for the set of " ' infinite positive ' and ' zero			
		positive finite' ordinal real numbers of δ -system in first order "			
		3.3.1 $(r_{\varpi_i})_{\delta} \in \varpi\mu(D)_{\delta}$ for $\delta = 1, 2$ and 3	89		
		1) Example for $\delta = 1$ to find $(r_{\varpi_i})_{\delta} \in \varpi\mu(D)_{\delta}$	89		
		2) Example for $\delta = 2$ to find $(r_{\varpi_i})_{\delta} \in \varpi_{\mu}(D)_{\delta}$	89		
		3) Example for $\delta = 3$ to find $(r_{\overline{\omega_i}})_{\delta} \in \overline{\omega_i}(D)_{\delta}$	90		
		3.3.2 $(r_{\theta_i})_{\delta} \in \theta \mu(D)_{\delta}$ for $\delta = 1, 2$ and 3	90		
		1) Example for $\delta = 1$ to find $(r_{\theta_i})_{\delta \in \theta \mu(D)_{\delta}}$	90		
		2) Example for $\delta = 2$ to find $(r_{\theta_i})_{\delta \in \theta \mu(D)_{\delta}}$	91		
		3) Example for $\delta = 3$ to find $(r_{\theta_i})_{\delta} \in \theta \mu(D)_{\delta}$	91		
		3.3.3 Some important arithmetical operations " +, -, \times and			
		+" which are different from today's mathematics	92		
	3.4 The relations between examples for different δ -system and				
	the generalization				
Appen	dix		103		
I.	Arg	uments about "real numbers" in contemporary mathematics	103		
II: "	Arguments about the term "infinite" i e " 00"				
III.	The term "zero" i.e. " 0 " which is either without the same sense as the usual real numbers or undecidable				
New notation and terminology (NNT) as well as abbreviation					
Bibliography					
Author and name Index					
Subject idex					

	XIII
Contents for I.B.	149
Contents for Part II.	150
Fig. 1	21
Fig. 2a	152
Fig. 2b	102
Table 1	66
Table 2	68
Table 3	69
Table 4	71
Table 5	151

. .