Rainer Palm Dimiter Driankov Hans Hellendoorn

## Model Based Fuzzy Control

## Fuzzy Gain Schedulers and Sliding Mode Fuzzy Controllers

With 86 Figures



## Table of Contents

| Foreword V |       |                                   |                                          |           |  |  |  |
|------------|-------|-----------------------------------|------------------------------------------|-----------|--|--|--|
| Pre        | eface |                                   | ······                                   | VII       |  |  |  |
| 1.         | Intr  | oduct                             | ion to Model Based Fuzzy Control         | 1         |  |  |  |
|            | 1.1   | Fuzzy                             | Concepts in Model Based Fuzzy Control    | <b>2</b>  |  |  |  |
|            |       | 1.1.1                             | Fuzzy Sets                               | 3         |  |  |  |
|            |       | 1.1.2                             | Fuzzy State, Input, and Output Variables | 6         |  |  |  |
|            |       | 1.1.3                             | The Fuzzy State Space                    | 9         |  |  |  |
|            | 1.2   | Contro                            | ol Schemes in Model Based Fuzzy Control  | 13        |  |  |  |
|            |       | 1.2.1                             | FLC Control Schemes                      | 14        |  |  |  |
|            | 1.3   | 3 Nonlinear Control Problems      |                                          | <b>20</b> |  |  |  |
|            |       | 1.3.1                             | Stabilization and Tracking               | 20        |  |  |  |
|            |       | 1.3.2                             | Specifications of Performance            | 22        |  |  |  |
|            | 1.4   | Metho                             | ods in Nonlinear Model Based Control     | <b>23</b> |  |  |  |
|            |       | 1.4.1                             | Feedback Linearization                   | 23        |  |  |  |
|            |       | 1.4.2                             | Robust Control                           | <b>24</b> |  |  |  |
|            |       | 1.4.3                             | Adaptive Control                         | <b>26</b> |  |  |  |
|            |       | 1.4.4                             | Gain Scheduling                          | <b>27</b> |  |  |  |
|            | 1.5   | .5 Motivation for TSFLC and SMFLC |                                          | <b>28</b> |  |  |  |
|            |       | 1.5.1                             | Takagi–Sugeno FLC-1                      | <b>28</b> |  |  |  |
|            |       | 1.5.2                             | Takagi–Sugeno FLC-2                      | 30        |  |  |  |
|            |       | 1.5.3                             | Sliding Mode FLC                         | 32        |  |  |  |
| 2.         | The   | FLC                               | as a Nonlinear Transfer Element          | 37        |  |  |  |
|            | 2.1   | The C                             | Computational Structure of an FLC        | 38        |  |  |  |
|            |       | 2.1.1                             | Input Scaling                            | 39        |  |  |  |
|            |       | 2.1.2                             | Fuzzification                            | 41        |  |  |  |
|            |       | 2.1.3                             | Rule Firing                              | 42        |  |  |  |
|            |       | 2.1.4                             | Defuzzification                          | 44        |  |  |  |
|            |       | 2.1.5                             | Denormalization                          | 45        |  |  |  |
|            | 2.2   | The N                             | Ionlinearity of the FLC                  | 45        |  |  |  |
|            |       | 2.2.1                             | Input Scaling and Output Scaling         | 46        |  |  |  |
|            |       | 2.2.2                             | Fuzzification                            | 47        |  |  |  |

| /  |     |              |                                                    |     |
|----|-----|--------------|----------------------------------------------------|-----|
|    | 1   | 2.2.3        | Rule Firing                                        | 47  |
| /  |     | 2.2.4        | Defuzzification                                    | 47  |
|    | 1   | 2.2.5        | Discontinuities in the Controller-Output           | 48  |
| C  | 2.3 | Rule-l       | Based Conventional TE                              | 51  |
|    | 2.4 | Stabil       | ity in Model Based Fuzzy Control                   | 56  |
|    |     | 2.4.1        | Equilibrium Points                                 | 59  |
|    |     | 2.4.2        | Stability Concepts for Autonomous Systems          | 61  |
|    |     | 2.4.3        | Stability Concepts for Nonautonomous Systems       | 70  |
|    |     | 2.4.4        | Slowly Varying Nonautonomous Systems               | 73  |
| 3. | Mo  | del Ba       | sed Design of Sliding Mode FLC                     | 75  |
|    | 3.1 | A Bri        | ef Introduction to Sliding Mode Control            | 76  |
|    | 3.2 | The S        | imilarity Between FLC and SMC                      | 82  |
|    |     | 3.2.1        | The Diagonal Form FLC                              | 82  |
|    |     | 3.2.2        | SMC with BL for a Second-Order System              | 89  |
|    |     | 3.2.3        | Analytical Description of a Diagonal Form FLC      | 90  |
|    |     | 3.2.4        | Comparison of an SMC with BL with a Diagonal Form  |     |
|    |     |              | FLC                                                | 91  |
|    |     | 3.2.5        | Introduction of the SMFLC                          | 92  |
|    | 3.3 | Desig        | n of an SMFLC                                      | 92  |
|    |     | 3.3.1        | Design of the Transfer Characteristic              | 93  |
|    |     | 3.3.2        | Input Normalization and Output Denormalization for | 04  |
|    |     |              | a Second-Order System                              | 94  |
|    |     | 3.3.3        | Ine Shaing Mode FLC (SMFLC) as a State Depen-      | 06  |
|    |     | 221          | CMELC for a System of <i>n</i> th Order            | 90  |
|    |     | 0.0.4<br>२२5 | The TISO SMELC                                     | 91  |
|    |     | 336          | SMFLC with Integrator                              | 100 |
|    | 34  | Tunin        | of Input Scaling Factors                           | 103 |
|    | 3.5 | Nume         | rical Example                                      | 106 |
|    | -   | 3.5.1        | The Model                                          | 107 |
|    |     | 3.5.2        | Design of the TISO SMFLC                           | 108 |
|    |     | 3.5.3        | Design of the Sliding Mode Controller with BL      | 111 |
|    |     | 3.5.4        | Simulation Results                                 | 112 |
|    | 3.6 | SMFI         | LC for MIMO Systems                                | 113 |
| 4. | Мо  | del Ba       | ased Design of Takagi–Sugeno FLCs                  | 117 |
|    | 4.1 | Mode         | l Based Design of Takagi–Sugeno FLC-1              | 118 |
|    |     | 4.1.1        | The Open Loop Fuzzy Model                          | 118 |
|    |     | 4.1.2        | The Takagi-Sugeno FLC-1                            | 120 |
|    |     | 4.1.3        | The Closed Loop Fuzzy Model                        | 122 |
|    |     | 4.1.4        | The Design of Takagi-Sugeno FLC-1                  | 124 |
|    | 4.2 | The N        | Model Based Design of Takagi–Sugeno FLC-2          | 125 |
|    |     | 4.2.1        | The Control Problem                                | 125 |
|    |     | 4.2.2        | The Open Loop Fuzzy Model                          | 131 |

|       |      | 4.2.3  | The Takagi-Sugeno FLC-2 133                   |  |  |  |  |
|-------|------|--------|-----------------------------------------------|--|--|--|--|
|       |      | 4.2.4  | The Closed Loop Fuzzy Model                   |  |  |  |  |
|       |      | 4.2.5  | The Design of Takagi-Sugeno FLC-2 137         |  |  |  |  |
|       |      | 4.2.6  | Approximation Errors                          |  |  |  |  |
|       | 4.3  | The T  | akagi–Sugeno FLC-2 as a Gain Scheduler        |  |  |  |  |
|       |      | 4.3.1  | The Gain Scheduling Design Method 144         |  |  |  |  |
|       |      | 4.3.2  | The Design of a Fuzzy Gain Scheduler 146      |  |  |  |  |
| 5.    | Exa  | amples |                                               |  |  |  |  |
|       | 5.1  | A Rob  | oot Arm Example for a MIMO SMFLC              |  |  |  |  |
|       |      | 5.1.1  | Basic Equations                               |  |  |  |  |
|       |      | 5.1.2  | The Two-Link Robot Arm 154                    |  |  |  |  |
|       | 5.2  | Robot  | ic Example for a MIMO Takagi-Sugeno FLC-2 162 |  |  |  |  |
|       |      | 5.2.1  | Basic Equations                               |  |  |  |  |
|       |      | 5.2.2  | The Two-Link Robot Arm 165                    |  |  |  |  |
| Ref   | eren | .ces   |                                               |  |  |  |  |
| Index |      |        |                                               |  |  |  |  |

•