Series in Banach Spaces

Conditional and Unconditional Convergence

Mikhail I. Kadets Vladimir M. Kadets

Translated from the Russian by Andrei lacob

`-_.,

Birkhäuser Verlag Basel · Boston · Berlin

CONTENTS

Intr	oduction	vii
Not	ations	1
Cha	pter 1. Background Material	
§1.	Numerical Series. Riemann's Theorem Main Definitions. Elementary Properties	5
§3.	of Vector Series Preliminary Material on Rearrangements of Series of	7
	Elements of a Banach Space	9
	pter 2. Series in a Finite-Dimensional Space	
~	Steinitz's Theorem on the Sum Range of a Series The Dvoretzky-Hanani Theorem on Perfectly	13
	Divergent Series	21
§3.	Pecherskii's Theorem	23
Cha	apter 3. Conditional Convergence in an Infinite- Dimensional Space	
§1.	Basic Counterexamples	29
-	A Series Whose Sum Range Consists of Two Points	32
-	Chobanyan's Theorem	36
§4.	The Khinchin Inequalities and the Theorem of M. I. Kadets on Conditionally Convergent Series in L_p	39
Cha	apter 4. Unconditionally Convergent Series	
$\S1.$	The Dvoretzky-Rogers Theorem Orlicz's Theorem on Unconditionally Convergent Series	45
0	in L_p Spaces	49
§3.	Absolutely Summing Operators. Grothendieck's Theorem .	52
Cha	apter 5. Orlicz's Theorem and the Structure of Finite-Dimensional Subspaces	
§1.	Finite Representability	59
§2.	The space c_0 , C-Convexity, and Orlicz's Theorem Survey on Results on Type and Cotype	$\begin{array}{c} 62 \\ 67 \end{array}$

CONTENTS

Cha	apter 6. Some Results from the General Theory		
	of Banach Spaces		
§1.	Fréchet Differentiability of Convex Functions	71	
$\S2.$	Dvoretzky's Theorem	73	
§3.	Basic Sequences	79	
§4.	Some Applications to Conditionally Convergent Series	82	
Cha	apter 7. Steinitz's Theorem and B-Convexity		
$\S1.$	Conditionally Convergent Series in Spaces		
_	with Infratype	87	
$\S2.$			
	Range to Arbitrary Infinite-Dimensional Banach Spaces	93	
§3.	Series in Spaces That Are Not <i>B</i> -Convex	97	
Cha	apter 8. Rearrangements of Series in Topological		
	Vector Spaces		
	Weak and Strong Sum Range	101	
	Rearrangements of Series of Functions	106	
§3.	Banaszczyk's Theorem on Series in Metrizable		
	Nuclear Spaces	110	
Ap	pendix. The Limit Set of the Riemann Integral		
	Sums of a Vector-Valued Function		
§1.	Functions Valued in a <i>B</i> -Convex Space	120	
	The Example of Nakamura and Amemiya	122	
	Separability of the Space and the Structure of $I(f)$	127	
$\S4.$	Connection with the Weak Topology	131	
Со	Comments to the Exercises		
Ref	References		
Ind	Index		