Hilbert Transforms in Signal Processing

Stefan L. Hahn

Artech House Boston • London

Contents

Preface			xiii
Introduc	ction		1
Chapter	1 Theory of the One-Dimensi	ional Hilbert Transformation	3
1.1	The Concepts of the Hilbert an	d Fourier Transformations	3
1.2	Analytic Functions		5
1.3	Cauchy Integral Representation	of the Analytic Function: The Analytic	
	Signal		7
1.4	Examples of Derivation of Hill	pert Transforms in the Time Domain	9
	1.4.1 Harmonic Signals: cos((ωt) and $\sin(\omega t)$, $\omega = 2\pi f$	9
	1.4.2 The Hilbert Transform	of the Delta Pulse	10
	1.4.3 The Hilbert Transform	of a Square Pulse	11
1.5	The Fourier Transform of the I	Hilbert Transform	12
1.6	Symmetry Properties of the Hill	ibert Transform	13
1.7	The Derivation of Hilbert Tran	sforms by Means of Fourier Transforms	14
	1.7.1 The Hilbert Transform	of a Gaussian Pulse	15
1.8	The Derivation of Hilbert Tran	sforms Using Hartley Transforms	16
1.9	Hilbert Transforms of Periodic	Signals	19
	1.9.1 The Method Based on	the Woodward Definition of a Periodic	
	Signal		19
	1.9.2 The Cotangent Form of	f the Hilbert Transform of the Periodic	
	Signal		21
	1.9.3 The Hilbert Transform	of the Fourier Series Expansion of a	
	Periodic Function		22

v

	1.9.4 The Derivation of the Hilbert Transform of Periodic Signals	
	Directly From the Time-Domain Hilbert Integral	25
1.10	Hilbert Transforms of the Bessel Functions of the First Kind	27
	1.10.1 Derivation of the Hilbert Transforms of Bessel Functions Using	
	Fourier Transforms	30
1.11	One-Sided Spectra of Analytic Signals and Analytic Spectra of Causal	
	Signals	36
	1.11.1 One-Sided Spectra of Analytic Signals	37
	1.11.2 Analytic Spectra of One-Sided (Causal) Signals	39
1.12	Integration of Analytic Signals	42
1.13	The Definitions of the Instantaneous Amplitude, Phase, and Frequency	
	of Analytic Signals	43
	1.13.1 Polar Notation of Analytic Signals	44
	1.13.2 The Instantaneous Complex Phase and Complex Frequency	47
1.14	Negative Instantaneous Frequency of the Analytic Signal	51
Refe	rences	53
Chanter	2 Properties of the Hilbert Transformation Derivations and	
Chapter	Applications	55
21	Introduction	55
2.1	Linearity	55
2.2	Linearity A Method of Generating the Hilbert Transform Using the	55
2.5	Samples of a Function	58
2.4	Linearity: Hilbert Transforms of Hyperbolic Functions	59
2.5	Iteration	60
2.6	Differentiation	61
2.7	Successive Iteration and Differentiation	62
2.8	Differentiation of the Convolutions	65
2.9	Differentiation and Multiplication by t. Hilbert Transforms of Hermite	
	Polynomials and Functions	67
	2.9.1 Hermite Polynomials	68
2.10	Hilbert Transforms of Legendre Polynomials	74
	2.10.1 Hilbert Transforms of Legendre Polynomials by Fourier	
	Transforms	80
2.11	Autoconvolution, Autocorrelation, and Energy Equality	82
2.12	The <i>n</i> -Fold Autoconvolution	86
2.13	The Hilbert Transform of a Product of Two Signals	88
	2.13.1 Nonoverlapping Spectra of $f(t)$ and $g(t)$ - Bedrosian's Theorem	88
	2.13.2 The Hilbert Transform of the Product $a(t)\cos(\omega_0 t + \varphi_0)$ [5]	91
2.14	The Hilbert Transform of a Product of Analytic Signals	92
Refe	rences	93
Chanter	3 Distributions in the Theory of the Hilbert Transformation and	
Shaptor	Complex Signals	95
31	Introduction	95
5.1		15

	3.2	Definition of a Distribution in Terms of Functionals	96
	3.3	The Complex Delta Distribution	97
		3.3.1 A Convolution Definition of the Analytic Signal	99
		3.3.2 The Concept of the Inverse Distribution	100
	3.4	The Polar Notation of the Complex Delta Distribution	101
	3.5	Other Notations of the Complex Delta Distribution	104
	3.6	The Integral and the Derivatives of the Complex Delta Distribution in	
		Terms of the Cauchy Approximation Functions	104
	3.7	The Integral and the Derivatives of the Complex Delta Distribution	106
	3.8	The Complex Delta Sampling Sequence	107
	3.9	The Two-Dimensional Complex Delta Distribution	110
	3.10	The Polar Representation of the Two-Dimensional Complex Delta	
		Distribution	112
		3.10.1 The Illustration of the Two-Dimensional Complex Delta	•••
		Distribution With Approximation Functions	114
	311	The Two-Dimensional Complex Sampling Sequence	114
	3.12	The Three Dimensional Complex Delta Distribution	115
	Dafa	ranges	110
	Refer	ences	110
C	hanter	4 The Discrete Hilbert Transformation	121
<u> </u>	<u>4</u> 1	Introduction	121
	42	The DFT-Discrete Fourier Transformation	121
	7.2	4.2.1 The Illustration of the Eveness and Oddness of Sequences	121
		4.2.1 The must allow of the Eveness and Oddness of Sequences	125
	13	Examples of the Derivation of the DET for Selected Simple Signals	125
	ч.у	4.3.1 The DET of Trigonometric Functions	127
	11	The 7 Transformation	134
	4.4 1 5	The Elementary Properties of the DET and 7 Transformations	120
	4.5	4.5.1 Linearity	120
		4.5.1 Encarry Equality (Parseval's Theorem)	120
		4.5.2 Energy Equality (Parseval's Theorem)	1.39
		4.5.5 Circular Convolution: Convolution-to-initiality inclusion Theorem	140
		4.5.4 Shifting Property	141
	4.6	The Discrete Hilbert Transformation	141
		4.6.1 Energy Relations	145
	4.7	Discrete Hilbert Transforms of Selected Sequences	146
		4.7.1 Energy Relations	146
		4.7.2 The Hilbert Transform of the Kronecker Delta Sample	147
		4.7.3 The Hilbert Transforms of Trigonometric Functions	149
		4.7.4 Energy Relations	149
		4.7.5 The Hilbert Transform of a Gaussian Sequence	149
		4.7.6 The DHT of a Sampled Unipolar Square Pulse	150
	4.8	Iteration of the Discrete Hilbert Transformation	153
		4.8.1 Energy Relation	155

4.9	The Sy	ystem Theory Derivation of the DHT	155
4.1) The C	omplex Analytic Discrete Sequence	156
4.1	l Causal	Discrete-Time Sequences and Analytic Discrete Spectra	159
4.12	2 The Bi	ilinear Transformation and the Cotangent Form of Hilbert	
	Transf	ormations	162
Ref	erences		167
Chapte	er 5 Hil	lbert Transformers	169
5 1	Genera	al Features of Hilbert Transformers	169
0.1	5.1.1	Transfer Function and Bandwidth	169
5.2	Phase-	Splitter Hilbert Transformers	171
0.2	5.2.1	Analog All-Pass Filters	172
5.3	A Sim	ple Method of Design for Hilbert Phase Splitters	174
	5.3.1	First Step	175
	5.3.2	Second Step	176
	5.3.3	Delay, Phase Distortions, and Equalization	183
5.4	Hilber	t Transformers With Tapped Delay Line Filters	184
5.5	Bandp	ass Hilbert Transformers	186
5.6	Genera	tion of Hilbert Transforms Using SSB Filtering	192
5.7	Digital	Hilbert Transformers	193
	5.7.1	The Transfer Function of the Ideal Noncausal Hilbert	
		Transformer	194
	5.7.2	Types of Digital Hilbert Transformers	198
5.8	FIR H	ilbert Transformers [15–18]	198
	5.8.1	Design	1 9 8
	5.8.2	Rectangular Window	200
	5.8.3	Parameters of the $G(e^{j\psi})$ Function	202
	5.8.4	Improving the Ripple Distribution Using Windows	203
	5.8.5	Types of Windows	203
	5.8.6	Illustration of The Functions $G(e^{j\psi})$ Obtained by Using Various	
		Windows	206
	5.8.7	Comparison of the Parameters of FIR Hilbert Transformers	
		Designed Using the Rectangular, Kaiser, and Tschebysheff	
		Windows	208
	5.8.8	Kaiser Window With Preemphasis	210
	5.8.9	Design of FIR Hilbert Transformers With Even Values of N	212
	5.8.10	Derivation of the Transfer Function (5.48)	212
5.9	FIR H	ilbert Transformers With Halfband Filters	215
5.10) Recapi	tulation of the Design Procedure of FIR Hilbert Transformers	219
5.1	l Digital	All-Pass Hilbert Transformers [23]	222
5.12	2 The D	esign of Hilbert Transformers by Use of Bilinear Frequency	
	Transf	ormation	225

5.13	IIR Discrete-Time Hilbert Transformers	226
	5.13.1 Butterworth Phase Functions	229
5.14	Differentiating Hilbert Transformers	230
	5.14.1 Analog Relations	230
	5.14.2 Discrete-Time Relations	230
	5.14.3 The Design of the FIR Differentiating Hilbert Transformer	233
Refe	rences	239
Chapter	6 The Hilbert Transform In Modulation Theory	241
6.1	Introduction	241
	6.1.1 Definition	241
6.2	The Concept of the Modulation Function of a Harmonic Carrier	242
	6.2.1 The Modified Modulation Function	243
6.3	Classification	244
	6.3.1 Linear Modulation	245
	6.3.2 Nonlinear Modulation	245
6.4	Test Signals in Modulation	247
	6.4.1 Test Signal in the Form of a Fourier Series	247
	6.4.2 Test Signals With Random Phases of the Harmonic Terms of	
	the Fourier Series	252
6.5	Basic Theory of Amplitude Modulation	253
	6.5.1 AM Modulators	253
	6.5.2 Low-Pass-to-Bandpass Filtering Analogy in AM	256
	6.5.3 AM—Energy Relations	258
6.6	Basic Theory of Angle Modulation	260
	6.6.1 Classification	262
	6.6.2 Phase and Frequency Modulators	263
	6.6.3 Spectra of Angle Modulation: Harmonic Modulating Signal	263
	6.6.4 Frequency Modulation by the Harmonic Signal	266
	6.6.5 Narrowband Phase or Frequency Modulation	266
	6.6.6 Wideband Phase or Frequency Modulation	267
	6.6.7 Adiabatic Theorem	267
	6.6.8 Spectra of Angle Modulation: Multitone Modulating Signal	267
6.7	Single-Sideband Linear AM Modulation	269
••••	6.7.1 Single-Sideband Modulators	271
6.8	General Forms of Single-Sideband Modulations	272
0,0	6.8.1 Basic Relations	272
6.9	The CSSB Signal for a Linear Envelope Demodulator	274
6.10	CSSB Modulation for Square-Law AM Demodulator	277
6.11	SSB Signal for a Linear FM Demodulator	280
0.11	6.11.1 Applications of the CSSB Signals	281
Refe	rences	283
		200

Chapter	7 The	e Hilbert Transform in Signal and System Theory	285
7.1	Introdu	ction	285
7.2	Hilbert	Transforms in the Theory of Linear Systems: Kramers-Kronig	
	Relatio	ns	285
	7.2.1	Causality	286
	7.2.2	Physical Realizability of Transfer Functions	287
	7.2.3	Minimum Phase Property	288
7.3	Amplit	ude Phase Relations in DLTI Systems	290
	7.3.1	Minimum Phase Property in DLTI Systems	292
7.4	Measu	rement Systems Using the Amplitude Phase Relations of LTI	
	System	S	293
7.5	The Kr	amers-Kronig Relations in Linear Macroscopic Continuous	
	Media	Ç î	293
7.6	The Co	oncept of Signal Delay in the Hilbertian Sense	295
7.7	The Hi	lbert Transform in the Theory of Sampling	298
	7.7.1	Bandpass Filtering of the Low-Pass Sampled Signal	303
7.8	Sampli	ng of Bandpass Signals	304
7.9	Ouadra	ture Sampling of a Bandpass Signal	305
7.10	Linear	Transformations of the Interpolatory Expansion	305
7.11	Genera	tion of a Random Signal Using the Interpolation Expansion	306
7.12	Comple	ex Analytic Random Signals	308
	7.12.1	Spectral Moments	313
	7.12.2	The Instantaneous Phase and Frequency of Gaussian Low-Pass	0.10
		Noise	314
7.13	Instanta	aneous Spectral Moments Defined by the Wiegner-Ville Time-	511
	Freque	ncv Distribution	316
7 14	Genera	tion of Two-Dimensional Random Fields	319
	7 14 1	Generation of Time-Variable Two-Dimensional Random	517
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Fields	319
7 1 5	The De	finition of Electrical Power in Terms of Hilbert Transforms	517
7.15	and Ar	alvtic Signals	321
	7 15 1	Harmonic Waveforms of Voltage and Current	321
	7 15 2	The Notion of Complex Power	324
	7 15 3	Generalization of the Notion of Power	324
7 16	Genera	lization of the Notion of Power for Signals With Finite Average	521
7.10	Power	inzution of the rotion of rower for Signals with rinke revelage	326
Refer	ences		331
Kelei	chees		551
Chapter	8 Mu	ltidimensional Complex Signals and Applications	333
8.1	Introdu	ction	333
8.2	The De	efinition of the Multidimensional Complex Signal	333
	8.2.1	The Frequency-Domain Definition of the <i>n</i> -Dimensional	
		Complex Signal	334

7

	8.2.2 Signal Domain Definition of the <i>n</i> -Dimensional Complex	
	Signal	335
8.3	The Definition of the Two-Dimensional Complex Signal	336
	8.3.1 The Kernel of the Two-Dimensional Fourier Transformation	
	Written in Terms of Hilbert Transforms	337
8.4	Separable Two-Dimensional Signals	339
8.5	Conjugate Two-Dimensional Analytic Signals	340
8.6	The Polar Notation of Two-Dimensional Complex Signals	341
	8.6.1 Local Amplitudes and Phases for Separable Two-Dimensional	
	Signals	343
8.7	Examples of Separable Complex Two-Dimensional Signals	344
8.8	Examples of Nonseparable Two-Dimensional Complex Signals	348
8.9	Image Decomposition and Reconstruction Using Amplitude and Phase	
	Patterns	358
8.10	Three-Dimensional Complex Signals	360
8.11	Multidimensional Modulation Theory	363
	8.11.1 The <i>n</i> -Dimensional Modulation Function	364
	8.11.2 The Two-Dimensional Modulation Theory	364
	8.11.3 Two-Dimensional Amplitude Modulation	365
	8.11.4 The Single-Quadrant Modulation SQM	366
	8.11.5 Two-Dimensional Phase Modulation	367
Refe	prences	368
Chapte	r 9 Multidimensional Hilbert and Fourier Transformations	369
9.1	Introduction	369
9.2	Evenness and Oddness of Multidimensional Real Signals	369
9.3	Signal Domain Definition of the n-Dimensional Hilbert Transformation	373
9.4	Two-Dimensional Hilbert Transformations	374
9.5	Partial Hilbert Transformations	375
9.6	The Derivation of <i>n</i> -Dimensional Hilbert Transforms by Means of	
	n-Dimensional Fourier Transforms	376
9.7	The Two-Dimensional Discrete Hilbert Transformation: Two-	
	Dimensional DHT	379
	9.7.1 Properties of the One-Dimensional DHT	380
	9.7.2 The Two-Dimensional Discrete Hilbert Transform	380
	9.7.3 Properties of the Two-Dimensional DHT [4]	381
	9.7.4 Energy Relations	385
9.8	Stark's Extension of Bedrosian's Theorem	391
9.9	Tables of Two-Dimensional Hilbert Transforms	394
Refe	erences	395
Append	lix A Tabulation of Hilbert Pairs	397

	٠	
•		
. А.	£	æ

•

Appendi	хB	The Derivation of the Derivative of the Logarithmic and $\theta(t)$ Distributions	405
Appendi	x C	Supplement to Chapter 4	407
C.1	The F	Fourier Series Representation of the DFT	407
C.2	Calcu	lation of the DHT Using the Discrete Hartley Transformation	408
Appendi	хD	Details of the Calculation of the Phase Function of IIR Hilbert	
••		Transformers	411
D.1	Calcu	lation of the Coefficients $a(i)$	413
D.2	The F	Problem of the Value of K in (D.14)	416
Appendi	хE	Derivation of the Spectrum of the CSSB Signal for Linear	
		Amplitude	419
Appendi	хF	Derivation of the Fourier Spectrum of the N-Dimensional Hilbert	
••		Transform	425
About th	ne Aut	hor	427
Index	Index		429

•