Gregory C. Reinsel

## Elements of Multivariate Time Series Analysis

÷.

Second Edition

With 14 Figures

۰.\_



## Contents

| Preface to the Second Edition                                                         | vii |
|---------------------------------------------------------------------------------------|-----|
| Preface to the First Edition                                                          | ix  |
| 1. Vector Time Series and Model Representations                                       | 1   |
| 1.1 Stationary Multivariate Time Series and Their Properties                          | 2   |
| 1.1.1 Covariance and Correlation Matrices for a Stationary<br>Vector Process          | 2   |
| 1.1.2 Some Spectral Characteristics for a Stationary Vector<br>Process                | 4   |
| 1.1.3 Some Relations for Linear Filtering of a Stationary Vector<br>Process           | 5   |
| 1.2 Linear Model Representations for a Stationary Vector Process                      | 7   |
| 1.2.1 Infinite Moving Average (Wold) Representation of a<br>Stationary Vector Process | 7   |
| 1.2.2 Vector Autoregressive Moving Average (ARMA) Model<br>Representations            | 7   |
| A1 Appendix: Review of Multivariate Normal Distribution and<br>Related Topics         | 12  |
| A1.1 Review of Some Basic Matrix Theory Results                                       | 12  |
| A1.2 Vec Operator and Kronecker Products of Matrices                                  | 13  |
| A1.3 Expected Values and Covariance Matrices of Random Vectors                        | 14  |
| A1.4 The Multivariate Normal Distribution                                             | 14  |
| A1.5 Some Basic Results on Stochastic Convergence                                     | 19  |
| 2. Vector ARMA Time Series Models and Forecasting                                     | 22  |
| 2.1 Vector Moving Average Models                                                      | 22  |
| 2.1.1 Invertibility of the Vector Moving Average Model                                | 22  |

| 2.1.2   | Covariance Matrices of the Vector Moving Average<br>Model                                           | 2 |
|---------|-----------------------------------------------------------------------------------------------------|---|
| 2.1.3   | Features of the Vector MA(1) Model                                                                  | 2 |
|         | Model Structure for Subset of Components in the Vector                                              | _ |
|         | MA Model                                                                                            | 2 |
| 2.2 Ve  | ctor Autoregressive Models                                                                          | 2 |
|         | Stationarity of the Vector Autoregressive Model                                                     | 2 |
|         | Yule–Walker Relations for Covariance Matrices of a<br>Vector AR Process                             | 2 |
| 2.2.3   | Covariance Features of the Vector AR(1) Model                                                       | 2 |
|         | Univariate Model Structure Implied by Vector AR Model                                               | 3 |
|         | ctor Mixed Autoregressive Moving Average Models                                                     |   |
|         | Stationarity and Invertibility of the Vector ARMA Model                                             |   |
|         | Relations for the Covariance Matrices of the Vector<br>ARMA Model                                   | - |
| 2.3.3   | Some Features of the Vector ARMA(1,1) Model                                                         | - |
|         | Consideration of Parameter Identifiability for Vector<br>ARMA Models                                |   |
| 2.3.5   | Further Aspects of Nonuniqueness of Vector ARMA<br>Model Representations                            |   |
| 2.4 No  | onstationary Vector ARMA Models                                                                     |   |
|         | Vector ARIMA Models for Nonstationary Processes                                                     |   |
|         | Cointegration in Nonstationary Vector Processes                                                     |   |
|         | The Vector IMA(1,1) Process or Exponential Smoothing<br>Model                                       |   |
| 2.5 Pre | ediction for Vector ARMA Models                                                                     |   |
| -       | Minimum Mean Squared Error Prediction                                                               |   |
|         | Forecasting for Vector ARMA Processes and Covariance<br>Matrices of Forecast Errors                 |   |
| 253     | Computation of Forecasts for Vector ARMA Processes                                                  |   |
|         | Some Examples of Forecast Functions for Vector ARMA                                                 |   |
| 2.5.4   | Models                                                                                              |   |
| 2.6 St  | ate-Space Form of the Vector ARMA Model                                                             |   |
|         | ppendix: Methods for Obtaining Autoregressive and                                                   |   |
|         | Ioving Average Parameters from Covariance Matrices                                                  |   |
|         | Iterative Algorithm for Factorization of Moving Average                                             |   |
| 112.1   | Spectral Density Matrix in Terms of Covariance<br>Matrices                                          |   |
| A2.2    | Autoregressive and Moving Average Parameter Matrices                                                |   |
|         | in Terms of Covariance Matrices for the Vector                                                      |   |
|         | ARMA Model                                                                                          |   |
| A2.3    | Evaluation of Covariance Matrices in Terms of the AR<br>and MA Parameters for the Vector ARMA Model |   |

## Contents

| 3. | Canoni           | cal Structure of Vector ARMA Models                                               |  |
|----|------------------|-----------------------------------------------------------------------------------|--|
|    |                  | onsideration of Kronecker Structure for Vector ARMA                               |  |
|    |                  | Kronecker Indices and McMillan Degree of Vector<br>ARMA Process                   |  |
|    | 3.1.2            | Echelon Form Structure of Vector ARMA Model Implied<br>by Kronecker Indices       |  |
|    | 3.1.3            | Reduced-Rank Form of Vector ARMA Model Implied by<br>Kronecker Indices            |  |
|    | 3.2 Ca           | nonical Correlation Structure for ARMA Time Series                                |  |
|    | 3.2.1            | Review of Canonical Correlations in Multivariate<br>Analysis                      |  |
|    | 3.2.2            | Canonical Correlations for Vector ARMA Processes                                  |  |
|    | 3.2.3            | Relation to Scalar Component Model Structure                                      |  |
|    |                  | tial Autoregressive and Partial Correlation Matrices                              |  |
|    |                  | Vector Autoregressive Model Approximations and Partial<br>Autoregression Matrices |  |
|    | 3.3.2            | Recursive Fitting of Vector AR Model Approximations                               |  |
|    | 3.3.3            | Partial Cross-Correlation Matrices for a Stationary Vector<br>Process             |  |
|    | 3.3.4            | Partial Canonical Correlations for a Stationary Vector<br>Process                 |  |
| 4. | Initial<br>Model | Model Building and Least Squares Estimation for Vector AR s                       |  |
|    | 4.1 Sa<br>P      | mple Cross-Covariance and Correlation Matrices and Their roperties                |  |
|    | 4.1.1            | Sample Estimates of Mean Vector and of Covariance and<br>Correlation Matrices     |  |
|    | 4.1.2            | Asymptotic Properties of Sample Correlations                                      |  |
|    |                  | Imple Partial AR and Partial Correlation Matrices and Their roperties             |  |
|    | 4.2.1            | Test for Order of AR Model Based on Sample Partial<br>Autoregression Matrices     |  |
|    | 4.2.2            | Equivalent Test Statistics Based on Sample Partial<br>Correlation Matrices        |  |
|    | 4.3 Co           | nditional Least Squares Estimation of Vector AR Models                            |  |
|    |                  | Least Squares Estimation for the Vector AR(1) Model                               |  |
|    |                  | Least Squares Estimation for the Vector AR Model of<br>General Order              |  |
|    | 4.3.3            | Likelihood Ratio Testing for the Order of the AR Model                            |  |

|        | Derivation of the Wald Statistic for Testing the Order of<br>the AR Model                                    | 9        |
|--------|--------------------------------------------------------------------------------------------------------------|----------|
| 4.4 Re | lation of LSE to Yule–Walker Estimate for Vector AR odels                                                    | . 9      |
| 4.5 Ad | ditional Techniques for Specification of Vector ARMA<br>odels                                                | 10       |
| 4.5.1  | Use of Order Selection Criteria for Model<br>Specification                                                   | 10       |
| 4.5.2  | Sample Canonical Correlation Analysis Methods                                                                | 10       |
| 4.5.3  | Order Determination Using Linear LSE Methods for the Vector ARMA Model                                       | 10       |
|        | pendix: Review of the General Multivariate Linear<br>egression Model                                         | 11       |
| A4.1   | Properties of the Maximum Likelihood Estimator of the Regression Matrix                                      | 11       |
| A4.2   | Likelihood Ratio Test of Linear Hypothesis About<br>Regression Coefficients                                  | 11       |
| A4.3   | Asymptotically Equivalent Forms of the Test of Linear<br>Hypothesis                                          | 11       |
| A4.4   | Multivariate Linear Model with Reduced-Rank<br>Structure                                                     | 11       |
| A4.5   | Generalization to Seemingly Unrelated Regressions<br>Model                                                   | 12       |
|        | um Likelihood Estimation and Model Checking for Vector<br>Models                                             | 12       |
| 5.1 Co | onditional Maximum Likelihood Estimation for Vector                                                          |          |
| A      | RMA Models                                                                                                   | 12       |
| 5.1.1  | Conditional Likelihood Function for the Vector ARMA<br>Model                                                 | 12       |
| 5.1.2  | Likelihood Equations for Conditional ML Estimation                                                           | 12       |
|        | Iterative Computation of the Conditional MLE by GLS<br>Estimation                                            | 12       |
| 5.1.4  | Asymptotic Distribution for the MLE in the Vector<br>ARMA Model                                              | 12       |
| 5.2 M  | L Estimation and LR Testing of ARMA Models Under                                                             |          |
|        | inear Restrictions                                                                                           | 13       |
| 5.2.1  | ML Estimation of Vector ARMA Models with Linear                                                              |          |
| 600    | Constraints on the Parameters                                                                                | 1:<br>1: |
|        | LR Testing of the Hypothesis of the Linear Constraints<br>ML Estimation of Vector ARMA Models in the Echelon |          |
|        | Canonical Form                                                                                               | 1        |
| 5.3 Ex | act Likelihood Function for Vector ARMA Models                                                               | 1        |

| 5.3.1  | Expressions for the Exact Likelihood Function and Exact Backcasts                           | 13 |
|--------|---------------------------------------------------------------------------------------------|----|
| 5.3.2  | Special Cases of the Exact Likelihood Results                                               | 13 |
|        | Finite Sample Forecast Results Based on the Exact<br>Likelihood Approach                    | 14 |
|        | novations Form of the Exact Likelihood Function for RMA Models                              | 14 |
|        | Use of Innovations Algorithm Approach for the Exact<br>Likelihood                           | 14 |
| 5.4.2  | Prediction of Vector ARMA Processes Using the<br>Innovations Approach                       | 14 |
| 5.5 Ov | verall Checking for Model Adequacy                                                          | 14 |
| 5.5.1  | Residual Correlation Matrices and Overall Goodness-of-<br>Fit Test                          | 14 |
| 5.5.2  | Asymptotic Distribution of Residual Covariances and Goodness-of-Fit Statistic               | 1. |
| 5.5.3  | Use of the Score Test Statistic for Model Diagnostic<br>Checking                            | 1: |
|        | ffects of Parameter Estimation Errors on Prediction roperties                               | 1: |
| 5.6.1  | Effects of Parameter Estimation Errors on Forecasting in the Vector $AR(p)$ Model           | 1: |
| 5.6.2  | Prediction Through Approximation by Autoregressive<br>Model Fitting                         | 1: |
|        | lotivation for AIC as Criterion for Model Selection, and<br>Corrected Versions of AIC       | 10 |
|        | umerical Examples                                                                           | 1  |
|        | ed-Rank and Nonstationary Cointegrated Models                                               | 1′ |
|        | ested Reduced-Rank AR Models and Partial Canonical Correlation Analysis                     | 1  |
| 6.1.1  | Specification of Ranks Through Partial Canonical<br>Correlation Analysis                    | 1  |
| 6.1.2  | Canonical Form for the Reduced-Rank Model                                                   | 1  |
| 6.1.3  | Maximum Likelihood Estimation of Parameters in the<br>Model                                 | 1  |
| 6.1.4  | Relation of Reduced-Rank AR Model with Scalar<br>Component Models and Kronecker Indices     | 1  |
|        | eview of Estimation and Testing for Nonstationarity (Unit Roots) in Univariate ARIMA Models | 1  |
|        | Limiting Distribution Results in the AR(1) Model with a<br>Unit Root                        | 1  |

| 6.2.2     | Unit-Root Distribution Results for General Order AR<br>Models                             | 1 |
|-----------|-------------------------------------------------------------------------------------------|---|
|           | onstationary (Unit-Root) Multivariate AR Models,<br>stimation, and Testing                | 1 |
|           | Unit-Root Nonstationary Vector AR Model, the Error-<br>Correction Form, and Cointegration | 1 |
| 6.3.2     | Asymptotic Properties of the Least Squares Estimator                                      | 1 |
| 6.3.3     | Reduced-Rank Estimation of the Error-Correction Form<br>of the Model                      | 1 |
| 6.3.4     | Likelihood Ratio Test for the Number of Unit Roots                                        | 1 |
| 6.3.5     | Reduced-Rank Estimation Through Partial Canonical<br>Correlation Analysis                 | 2 |
| 6.3.6     | Extension to Account for a Constant Term in the Estimation                                | 2 |
| 6.3.7     | Forecast Properties for the Cointegrated Model                                            | 2 |
| 6.3.8     | Explicit Unit-Root Structure of the Nonstationary AR<br>Model and Implications            | 2 |
| 6.3.9     | Further Numerical Examples                                                                | 2 |
|           | Canonical Analysis for Vector Autoregressive Time eries                                   | 2 |
| 6.4.1     | Canonical Analysis Based on Measure of<br>Predictability                                  | 2 |
| 6.4.2     | Application to the Analysis of Nonstationary Series for<br>Cointegration                  | 2 |
| 6.5 M     | ultiplicative Seasonal Vector ARMA Models                                                 | 2 |
|           | Some Special Seasonal ARMA Models for Vector Time<br>Series                               | 2 |
| 7. State- | Space Models, Kalman Filtering, and Related Topics                                        | 2 |
| 7.1 St    | ate-Variable Models and Kalman Filtering                                                  | 2 |
| 7.1.1     | The Kalman Filtering Relations                                                            | 2 |
| 7.1.2     | Smoothing Relations in the State-Variable Model                                           | 2 |
| 7.1.3     | Innovations Form of State-Space Model and Steady State for Time-Invariant Models          |   |
| 7.1.4     | Controllability, Observability, and Minimality for<br>Time-Invariant Models               |   |
| 7.2 St    | ate-Variable Representations of the Vector ARMA Model                                     | 2 |
| 7.2.1     | A State-Space Form Based on the Prediction Space of<br>Future Values                      | 2 |
| 7.2.2     | Exact Likelihood Function Through the State-Variable<br>Approach                          | 2 |
| 7.2.3     | Alternate State-Space Forms for the Vector ARMA Model                                     | 2 |

| 7.2.4 Minimal Dimension State-Variable Representation and<br>Kronecker Indices                             | 247 |
|------------------------------------------------------------------------------------------------------------|-----|
| 7.2.5 (Minimal Dimension) Echelon Canonical State-Space                                                    | 247 |
| Representation                                                                                             | 247 |
| 7.3 Exact Likelihood Estimation for Vector ARMA Processes<br>with Missing Values                           | 255 |
| 7.3.1 State-Space Model and Kalman Filtering with Missing Values                                           | 255 |
| 7.3.2 Estimation of Missing Values in ARMA Models                                                          | 257 |
| 7.3.3 Initialization for Kalman Filtering, Smoothing, and<br>Likelihood Evaluation in Nonstationary Models | 260 |
| 7.4 Classical Approach to Smoothing and Filtering of Time Series                                           | 265 |
| 7.4.1 Smoothing for Univariate Time Series                                                                 | 266 |
| 7.4.2 Smoothing Relations for the Signal Plus Noise or                                                     |     |
| Structural Components Model                                                                                | 269 |
| 7.4.3 A Simple Vector Structural Component Model for Trend                                                 | 272 |
| 8. Linear Models with Exogenous Variables                                                                  | 274 |
| 8.1 Representations of Linear Models with Exogenous<br>Variables                                           | 274 |
| 8.2 Forecasting in ARMAX Models                                                                            |     |
| 8.2.1 Forecasts When Future Exogenous Variables Must Be<br>Forecasted                                      |     |
| 8.2.2 MSE Matrix of Optimal Forecasts                                                                      |     |
| 8.2.3 Forecasting When Future Exogenous Variables Are<br>Specified                                         |     |
| 8.3 Optimal Feedback Control in ARMAX Models                                                               |     |
| 8.4 Model Specification, ML Estimation, and Model Checking                                                 |     |
| for ARMAX Models                                                                                           | 285 |
| 8.4.1 Some Comments on Specification and Checking of<br>ARMAX Models                                       | 285 |
| 8.4.2 ML Estimation for ARMAX Models                                                                       | 286 |
| 8.4.3 Asymptotic Distribution Theory of Estimators in                                                      |     |
| ARMAX Models                                                                                               | 289 |
| 8.5 Numerical Example                                                                                      | 292 |
| Appendix: Time Series Data Sets                                                                            | 299 |
| Exercises and Problems                                                                                     | 315 |
| References                                                                                                 | 332 |
| Subject Index                                                                                              | 345 |
| Author Index                                                                                               | 354 |