Omar Hijab

Introduction to Calculus and Classical Analysis

With 68 Illustrations

Contents

Preface	vii
Acknowledgements	ix
1 The Set of Real Numbers	1
1.1 Sets and Mappings	1
1.2 The Set R	3
1.3 The Subset N and the Principle of Induction	7
1.4 The Completeness Property	12
1.5 Sequences and Limits	16
1.6 Nonnegative Series and Decimal Expansions	25
1.7 Signed Series and Cauchy Sequences	30
2 Continuity	39
2.1 Compactness in R and \mathbf{R}^2	39
2.2 Continuous Limits	42
2.3 Continuous Functions	45
3 Differentiation	61
3.1 Derivatives	61
3.2 Mapping Properties	68
3.3 Graphing Techniques	74
3.4 Power Series	83
3.5 Trigonometry	94
3.6 Primitives	102
4 Integration	110
4.1 The Cantor Set	110
4.2 Area	114
4.3 The Integral	127
4.4 The Fundamental Theorem of Calculus	143
4.5 The Method of Exhaustion	153
5 Applications	163
5.1 Euler's Gamma Function	163
5.2 The Number π	168
5.3 Gauss' Arithmetic-Geometric Mean (AGM)	182

Index	309
References	307
A.5 Chapter 5	285
A.4 Chapter 4	269
A.3 Chapter 3	255
A.2 Chapter 2	248
A.1 Chapter 1	234
Appendix Solutions	234
5.9 The Euler–Maclaurin Formula	226
5.8 Riemann's Zeta Function	217
5.7 Jacobi's Theta Functions	211
5.6 Infinite Products	203
5.5 Stirling's Approximation of <i>n</i> !	197
5.4 The Bell-Shaped Curve	188

-