AN INTRODUCTION TO GLOBAL SPECTRAL MODELING

T. N. Krishnamurti H.S. Bedi V.M. Hardiker

New York Oxford Oxford University Press 1998

Contents

1	Intr	oduction	1
2	An	Introduction to Finite Differencing	4
	2.1	Introduction	4
	2.2	Application of Taylor's Series to Finite Differencing	5
	2.3	Forward and Backward Differencing	6
	2.4	Centered Finite Differencing	7
	2.5	Fourth-Order Accurate Formulas	8
	2.6	Second-Order Accurate Laplacian	10
	2.7	Fourth-Order Accurate Laplacian	15
	2.8	Elliptic Partial Differential Equations in Meteorology	17
	2.9	Direct Method	18
	2.10	Relaxation Method	21
	2.11	Sequential Relaxation Versus Simultaneous Relaxation	26
	2.12	Barotropic Vorticity Equation	28
	2.13	The 5-Point Jacobian	30
	2.14	Arakawa Jacobian	30
	2.15	Exercises	35
3	Time-Differencing Schemes		
	3.1	Introduction	37
	3.2	Amplification Factor	38
	3.3	Stability	40
	3.4	Shallow-Water Model	49
4	What Is a Spectral Model?		
	4.1	Introduction	54
	4.2	The Galerkin Method	55
	4.3	A Meteorological Application	58
	4.4	Exercises	59
5	Lower-Order Spectral Model		
	5.1	Introduction	60
	5.2	Maximum Simplification	61

An Introduction to Global Spectral Modeling

	5.3	Conservation of Mean-Square Vorticity and Mean	
		Kinetic Energy	64
	5.4	Energy Transformations	66
	5.5	Mapping the Solution	68
	5.6	An Example of Chaos	68
	5.7	Exercises	70
6	Mat	thematical Aspects of Spectral Models	71
	6.1	Introduction	71
	6.2	Legendre Equation and Associated Legendre Equa-	
		tion	73
	6.3	Laplace's Equation	76
	6.4	Orthogonality Properties	77
	6.5	Recurrence Relations	81
	6.6	Gaussian Quadrature	82
	6.7	Spectral Representation of Physical Fields	89
	6.8	Barotropic Spectral Model on a Sphere	93
	6.9	Shallow-Water Spectral Model	96
	6.10	Semi-implicit Shallow-Water Spectral Model	100
	6.11	Inclusion of Bottom Topography	102
	6.12	Exercises	103
7	Mu	tilevel Global Spectral Model	104
	7.1	Introduction	104
	7.2	Truncation in a Spectral Model	105
	7.3	Aliasing	107
	7.4	Transform Method	108
	7.5	The x-y- σ Coordinate System	112
	7.6	A Closed System of Equations in σ Coordinates on	
		a Sphere	118
	7.7	Spectral Form of the Primitive Equations	127
	7.8	Examples	134
8	Physical Processes		
	8.1	Introduction	138
	8.2	The Planetary Boundary Layer	138
	8.3	Cumulus Parameterization	146
	8.4	Large-Scale Condensation	159
	8.5	Parameterization of Radiative Processes	163
9	Initialization Procedures		
	9.1	Introduction	183
	9.2	Normal Mode Initialization	183
	9.3	Physical Initialization	193
	9.4	Initialization of the Earth's Radiation Budget	201

Spectral Energetics		
10.1 Introduction	204	
10.2 Energy Equations on a Sphere	204	
10.3 Energy Equations in Wavenumber Domain	219	
10.4 Energy Equations in Two-Dimensional Wavenumber		
Domain	232	
References		
Index	249	