PHYSICS AND TECHNOLOGY of Low-Temperature Plasmas

S. V. DRESVIN, editor A. V. DONSKOI V. M. GOLDFARB V. S. KLUBNIKIN, coauthors

MOSCOW, ATOMIZDAT 1972

ENGLISH EDITION:

T. CHERON, translator H. V. ECKERT, editor

THE IOWA STATE UNIVERSITY PRESS / AMES 1 9 7 7

CONTENTS

.

FOREWOR	D to the Russian Edition	ix
FOREWOR	D to the English Edition	xi
Chapter 1.	PLASMATRONS, THEIR DEVELOPMENT AND TECHNICAL CAPABILITIES	1
1.1.	General Characteristics of Plasmatrons	1
1.2.	Electric Arcs and Arc Plasmatrons	3
1.3.	Steady State Inductive Electrodeless Discharges and Induction Plasmatrons	6
	References	15
Chapter 2.	COMPOSITION, PHYSICS, THERMODYNAMICS AND TRANSPORT COEFFICIENTS OF EQUILIBRIUM PLASMAS	18
2.1.	Calculation of the Composition of Equilibrium Plasmas	18
2.2.	Enthalpy and Specific Heat of Plasmas	25
2.3.	Effective Cross-sections of Interactions	27
2.4.	Diffusion Processes, Viscosity and Thermal Conductivity in Plasmas	35
2.5.	Electrical conductivity of Plasmas	40.
	References Tarvis (Marcola Contraction	43
Chapter 3.	RADIATION AND SPECTRAL DIAGNOSTICS OF LOW TEMPERATURE PLASMAS	49
3.1.	Radiation of a Low Temperature Plasma	49

v

3.2.	Plasma Equilibrium Conditions at Pressures Close to Atmospheric	76
3.3.	Methods of Spectral diagnostics	95
3.4.	Some Problems in the Techniques of Spectral Diagnostics	119
3.5.	Determination of Plasma Parameters from Radiation Integrated over Broad Spectral Intervals	128
	References	133
Chapter 4.	THERMAL AND GAS-DYNAMIC METHODS FOR DIAGNOSTICS OF PLASMAS	141
4.1.	Measurement of the Temperature of Heavy Particles	141
4.2.	Measurement of Heat Fluxes	147
4.3.	Measurements of the Plasma Flow Velocity	161
4.4.	Measurement of Plasma Flow Turbulence	177
	References	181
Chapter 5.	HIGH-FREQUENCY INDUCTIVE PLASMATRONS	185
5.1.	Results of Temperature Determinations in High-frequency Inductive Discharge Plasmas by Optical Methods	185
5.2.	Gas Dynamics of the High-frequency Inductive Plasmatron	197
5.3.	Deviations from Thermal Equilibrium in Inductive Electrodeless Discharges in Argon at Atmospheric Pressure	201
5.4.	The Electrical Parameters of a High Frequency Induction Plasma	207
5.5.	Energy Consumption of High-frequency Inductive Plasmatrons	223
5.6.	Construction of High-frequency Inductive Plasmatrons	228
	References	237

vi

Chapter 6.	ARC PLASMATRONS	240
6.1.	Open Arc Plasmatrons for Technological Purposes	240
6.2.	Dynamics of Motion and Gas Heating by an Electric Arc in a Cylindrical Channel	255
6.3.	Plasma Jets of Arc Plasmatrons	263
	References	281
Chapter 7.	THEORY OF THE EQUILIBRIUM PLASMA	284
7.1.	The Elenbaas-Heller Equation for Electric Arcs	284
7.2.	The Complete System of Equations of the Dynamics of a Moving Plasma and its Solution for the Electric Arc	298
7.3.	Theory of the High Frequency Inductive Discharge	310
7.4.	The Role of Radiation in the Plasma Energy Balance	355
	References	367
Chapter 8.	TWO-TEMPERATURE PLASMA MODEL	369
8.1.	Formulation of the Problem	369
8.2.	Determination of the Temperature of the Atom-Ion Gas from a Predetermined Value of T _e	378
8.3.	Exact Approach to Determination of T and T _e in a Cylindrical Plasmatron	390
	References	417
Chapter 9.	HEAT TRANSFER TO BODIES IN LOW TEMPERATURE PLASMA FLOW	418
9.1.	General Remarks on Heat Transfer	418

9.2.	Heat Transfer to a Cylinder in Transverse Gas Flow (T _g > 1500°K)	421
9.3.	Particular Features of Heat Transfer in a Plasma	434
9.4.	Heat Transfer to a Cylinder from a Transverse Argon Plasma Flow	438
9.5.	Heat Transfer to a Transverse Cylinder in an Oxygen Plasma Flow	447
9.6.	Heat Transfer to a Sphere in Argon Plasma Flow	450
	References	453
Chapter 10.	DYNAMICS OF MOTION AND HEATING OF HIGH-MELTING PARTICLES IN PLASMA JETS	457
10.1.	The Calculation of Particle Motion in Plasma Jets	457
10.2.	Experimental Research Concerning Velocity and Heating of Solid Particles in Plasmas	462
10.3.	Calculation of the Temperature of a Particle Drifting in the Plasma. Gradient-free Heating	466
	References	471

1

ς.