SMT/ASIC/Hybrid 1990

Surface Mount Technologies Application Specific IC Hybrid & Advanced Packing Technologies 1990

Vorträge, gehalten auf dem Internationalen Kongreß in Nürnberg, Bundesrepublik Deutschland 15.–17. Mai 1990

Herausgeber H. Reichl, A. Eder und M. Bleicher

Veranstalter MESAGO Messe & Kongreß GmbH, Stuttgart

Hüthig Buch Verlag Heidelberg

INHALTSVERZEICHNIS

Organisation	٧
Vorwort	VII
1 Substrate und Materialien	
D. Friedrich OPTIPAD – eine Leiterplattenoberfläche zur prozeßtechnischen und metallurgischen Optimierung der Reflow-Löttechniken in der SMT	1
Ch. Bay POLYSTRATE - eine programmierbare Dünnschicht-Technologie für die schnelle Entwicklung und Produktion von elektronischen Schaltungen	13
M. Weinhold Optimierung der Packungsdichte bei SMD-Leiterplatten durch den Einsatz der richtigen Lötstoppmaske	23
E. John und W. Riedel Hybridschaltkreise hoher Packungsdichte auf Basis der Einebenen-Dünn- schichttechnologie	39
<u> 2 Löten</u>	
C. Morgenstern, Th. Kopp und F. Stockhaus Rechnergestützte Optimierung des Infrarot-Reflowlötprozesses in der DMT	51
R. Diehm Prozeßgesteuerte Erwärmungseinrichtung / Flexibler Reflow-Ofen	63
M. Reithinger Reflowlöttechniken für SMD-Baugruppen	77
R. Ruthardt Die Verfahren zur Lotpulvererzeugung und deren Konsequenzen für SMT- und Fine-Pitch-Lotpasten	93
3 CAD	
J. D. Douglas Logic Synthesis för ASIC Design	107
B. Kirsch, B. Koch und K. D. Müller-Glaser Schnelle Chipflächen- und Verlustleistungsschätzung im frühen ASIC-Ent- wurfsablauf	
W. Eisenmann Verlustleistungsberechnung für HDCMOS ASIC S	127
B. Geisberger Simulation von Systemkomponenten auf Platinenebene	135

J. Dick und E. Trischler Designbegleitende Verfahren für die Testbarkeit im Entwurf komplexer ASIC-Bausteine	147
A. Simsek, A. Eder und Rolf Dümcke CATLAY, automatische Tape-Layout Generierung	157
4 Dickschichttechnik	
K. Deckelmann Zuverlässige Dickfilm-Multilayer mit Silberleitbahnen	169
G. Klink Untersuchung der elektrochemischen Migration an Dickschichtleiterbahnen	179
5 Kleben	
E. Wanek Neues lichttechnisches Kleben für die Oberflächenmontage (SMT)	193
6 Aluminiumnitrid	
H. Gottschalk Hybridtechnik auf Aluminiumnitrid	205
D. Bonfert Trimmbarkeit von Widerständen auf Aluminiumnitrid-Substraten	213
B. Kessler Aluminiumnitrid-Substrate in der Leistungselektronik	225
7 Analog/Digital	
T. Sperling Digital/analog gemischte ASICs auf Standard HCMOS Prozeß	233
B. Graindource Mixed Analog/Digital in a Mixed Bipolar/CMOS Technology	241
8 Wärme	
P. Valenta Thermische Optimierung von OMB-bestückten Leiterplatten	251
F. Kob Funktionelle Design Rules in Hybrid CAD Systemen	263
A. Hobl Simulation der Kühlung von Substraten mit freier Konvektion	275
9 Technologietransfer	
J. Müller Technologietransfer in der Dünnschichttechnik	283

M. Feil Technologietransfer Dickschicht - Hybridtechnik	289
10 Test	
H. Diehl Die Implementierung von Boundary-Scan und die damit verbundenen Auswir- kungen auf den Baugruppentest	293
W. Voldan Viele Faktoren bestimmen die Qualität und die Gesamtkosten eines Systems beim Einsatz von PLDs	303
H. Fischer Die Integration der Boundary-Scan Methode bei ASICs und deren Test	311
<u>11 TAB</u>	
G. Schiebel Bestückung und Lötung von TAB- und Fine-Pitch-Komponenten	321
G. Zimmer Vorteilhafte Anwendung des Impuls-Lötverfahrens bei der Oberflächen- montage von hochpoligen Bauteilen	335
D. Knödler und R. Belschner Tape-Automatic-Bonding mittels Laserstrahl	349
12 Qualität	
L. Cergel IEEE PC Board Flex Test - its Use in SMD Lead Design and Soldering Technology Tuning	357
K. Reindl Durchgängige Testhaus-Dienstleistungen für SMT-Bauelemente	367
H. J. Albertus Eine quantitative Methode zur Lötbarkeitsprüfung von oberflächenmon- tierbaren Bauelementen	379
J. Scheubert Sicherung der Zuverlässigkeit	387
R. Tielemans, J. Roggen, L. de Schepper und L. Stals How to Predict Life Time of Hybrids?	397
E. Zakel und H. Reichl Untersuchungen zur Zuverlässigkeit von TAB-kontaktierten Chips	409
K. G. Kießling Untersuchungen zur Zuverlässigkeit von Lötverbindungen in der SMD-Technik	423

R. Dohle Zuverlässigkeit und Alterungsverhalten von Lötstellen in der Mikroelektronik	433
13 Fertigung	
H. L. Stamm Just in Time in der Flexiblen Leiterplattenfertigung	447
U. Schweigert und T. Leicht Planung und Auslegung von Elektronikfertigungsbereichen unter Just-in- Time-Gesichtspunkten	467
A. Krumbiegel Insert Mounting Technique (IMT), eine neue Bestückungstechnik, besonders für zylindrische Widerstände	479
H. Schubert Automatisches Lotpasten Siebdrucksystem	485
G. Seliger, S. Krüger, W. Freitag und H. Schwarzer Systematische Planung eines Montagesystems zur flexibel automatisierten SMD-Bestückung bei einem mittelständischen Unternehmen	487
H. Mandai, S. Kawabata, K. Wakino und W. Gottschling The New Bulk Feeding System	501
FW. Nolting Rechnergestützte Überwachung, Diagnose und Auftragsplanung	513
K. Feldmann, R. Flohr und J. Sturm Qualitätssicherung durch rechnerintegrierte Produktion in der Elektronik	523
14 Umwelt	
W. Richly Die derzeitigen Möglichkeiten zur CKW- und FCKW-Eliminierung in der Elektronikfertigung	537
A. Petit-Pierre Alternative Reinigungsmittel und -verfahren mit geringerer Umwelt- belastung als wirksamer Ersatz für FCKW-113	545
W. Leske, KA. Starz und H. Kühnhold Wasserspülbare Lotpasten – eine mögliche Lösung der FCKW-Problematik in der Elektronik-Fertigung?	555
15 Reparaturlöten	
P. Jörns Reparatur in der SMT durch partielles Aus- bzw. Einlöten	565