PHYSICS OF NONIDEAL PLASMA

V. E. Fortov I. T. lakubov USSR Academy of Sciences, Institute for High Temperatures, Institute of Chemical Physics, Chernogolovka Branch

Translated by Henri A. Bronstein

OHEMISPHERE PUBLISHING CORPORATION

New York

A member of the Taylor & Francis Group k Washington Philadelphia London

CONTENTS

v

FOREWORD ix

Chapter 1. NONIDEAL PLASMA. BASIC CONCEPTS 1

- 1.1. Interparticle interactions. Criteria of nonideality 2
- 1.2. The range of existence of nonideal plasma. The classification of states 13
- 1.3. Nonideal plasma in nature. Scientific and technical applications 23
 References 36

Chapter 2. ELECTRICAL METHODS OF NONIDEAL PLASMA GENERATION 39

- 2.1. Plasma heating in furnaces 39
- 2.2. Isobaric Joule heating 62
- 2.3. High-pressure electric discharges 71 References 78

Chapter 3. DYNAMIC METHODS IN THE PHYSICS OF NONIDEAL PLASMA 85

- 3.1. The principles of dynamic generation and diagnostics of plasma 88
- 3.2. Dynamic compression of the cesium plasma 99
- 3.3. Compression of inert gases by powerful shock waves 105
- 3.4. Isentropic expansion of shock-compressed metals 122
- 3.5. Generation of superdense plasma in shock waves 137 References 149
- Chapter 4. THE IONIZATION EQUILIBRIUM AND THERMODYNAMIC PROPERTIES OF WEAKLY IONIZED PLASMA 157
 - 4.1. Anomalous properties of metal plasma 158
 - 4.2. The reduction of ionization potential and the cluster ions in a weakly nonideal plasma 179
 - 4.3. Ionization equilibrium under conditions of strong charge-neutral interaction 198
 - 4.4. Ionization equilibrium in the plasma of dense metal vapors. Anomalously high electrical conductivity 219 References 233

Chapter 5. THE THERMODYNAMICS OF PLASMA WITH DEVELOPED IONIZATION 239

- 5.1. One-component plasma against the neutralizing background of compensating charge 239
- 5.2. Multicomponent plasma. The results derived from the perturbation theory 255
- 5.3. Pseudopotential models. Monte-Carlo calculations 264
- 5.4. The bound state contribution. The bound atom model 274
- 5.5. Quasi-classical approximation 283
- 5.6. A comparison of thermodynamic models with experiment 291
- 5.7. On phase transitions in nonideal plasma 303 References 315

Chapter 6. ELECTRICAL CONDUCTIVITY 323

- 6.1. The electrical conductivity of weakly nonideal plasma 324
- 6.2. The electrical conductivity of nonideal, weakly ionized plasma 342
- 6.3. The thermal e.m.f. of weakly nonideal plasma 356
- 6.4. The electrical conductivity of plasma with developed ionization. "Low" temperatures 362
- 6.5. The electrical conductivity of high-temperature nonideal plasma. The ion core effect 385 References 391

Chapter 7. THE OPTICAL PROPERTIES OF DENSE PLASMA 399

- 7.1. Basic radiation processes in rarefied atomic plasma 400
- 7.2. The effect of weak nonideality: Spectral line broadening and shift; photoionization threshold bias 410
- 7.3. Models of strong interparticle interaction. The reduction of the effective statistical weight of levels and their nonexistence in the region in question. The deformation of energy spectrum 418
- 7.4. The optical properties of low-temperature metal plasma 432 References 444
- Chapter 8. NONIDEAL PLASMA WITH CONDENSED DISPERSE PHASE (CDP) 451
 - 8.1. The classification of states of plasma with CDP 452
 - 8.2. Ionization equilibrium in weakly nonideal plasma with CDP 455
 - 8.3. Ionization equilibrium under conditions of strong interparticle interaction 470 References 482

Chapter 9. THE DYNAMICS AND STABILITY OF NONIDEAL PLASMA 485

- 9.1. The thermal instability of nonideal plasma with current. Stratification 485
- 9.2. Nonuniform steady-state conditions of Joule heating of plasma 494
- 9.3. Heating wave 500
- 9.4. Hydrodynamic "explosion" under conditions of low-temperature plasma flow 511
- 9.5. Hydrodynamic effects in nonideal plasma 516 References 541

APPENDIXES 545

INDEX 547