State-space Realisations of Linear 2-D Systems with Extensions to the General nD (n>2) Case

Table of Contents

Notation	xi
1. Introduction	1
2. Preliminaries	5
2.1 State-space Models	5
2.2 Transfer Function Matrices and Polynomial Description	9
2.3 The Gałkowski Approach – the SISO Case	
2.4 Singularity	
3. The Elementary Operation Algorithm for Polynomial Matri	ces 17
3.1 Basics	17
3.2 Analysis of the Elementary Operation Algorithm	
3.2.1 The EOA and Polynomial Matrix Description	
3.2.2 The EOA and Similarity	
3.3 The Elementary Operation Algorithm and Singularity	
3.4 Initial Representations for the Elementary Operation Algorithm	hm 39
3.5 Relationships between the Roesser and the Fornasini-Marche	esini Models 56
4 2D State-space Realizations and the Elementary Operation A	Algorithm — the
Single Input - Single Output (SISO) Case	

4.1 Basics
4.2 Links between the Roesser and Fornasini-Marchesini Models by the EOA 84
5. MIMO Systems – the 1D Case
5.1 Multi-input Single-output Systems
5.2 Single-input Multi-output Systems
5.3 MISO and SIMO Cases-the Dual Approach 101
5.4 General MIMO Case 106
5.5 Further Analysis
5.4 An Algebraic Characterization122
6. Multiple-input, Multiple-output (MIMO) Systems – the 2D Case 125
6.1 The General Approach
6.1.1 Column Least Common Multiplicity Based Approach 120
6.1.2 Row Least Common Multiplicity Based Approach
6.1.3 A Standard (Nonsingular) Realization Achieved by Direct Application
of the EOA
6.2 Algebraic Justification for the MIMO Case
6.3 Variable Transformations for the Elementary Operation Algorithm 140
6.3.1 Variable Inversion140
6.3.2 Generalised Bilinear Transform
7. The Elementary Operation Approach Extensions
7.1 The nD Elementary Operation Algorithm
7.2 Applications to Repetitive Processes
7.3 The Elementary Operation Algorithm and Laurent Polynomials
8. State-Space Realizations for 2D/nD Systems Revisited – Relations to EOA
8.1 Overview
8.2 A priori Non-minimal Realization
8.3 Multi-way Companion Matrices
8.3.1 The History of Multi-way Matrices

. . . .

8.3.2 Multi-way Matrices - Mathematical Basics	205
8.3.3 Three-way Companion Matrix of a Trivariate Polynomial	207
8.4 Minimal Realization for Multi-linear n-variate Transfer Functions	209
9. Conclusions and Further Work	219
References	223
Index	229