Elektromagnetische Felder

Von Dr. rer. nat. Günter Lautz Professor am Institut für Elektrophysik der Technischen Universität Braunschweig

3., durchgesehene Auflage Mit 104 Figuren

Inhalt

1. Feldtheorie in ruhender Materie	9
1.1. Allgemeine Grundlagen	9
1.1.1. Grundbegriffe des elektromagnetischen Feldes	9
1.1.2. Die Maxwellschen Gleichungen in integraler Form	16
1.1.3. Die Maxwellschen Gleichungen in differentieller Form	. 18
1.1.4. Randbedingungen an den Grenzflächen zweier verschiedener Medie	n 19
1.1.5. Materialgleichungen für homogene, isotrope Medien	23
1.1.6. Der Erhaltungssatz der elektrischen Ladung	24
1.1.7. Der Energieerhaltungssatz im elektromagnetischen Feld	25
1.1.8. Klassifikation der elektromagnetischen Felder	27
1.2. Elektrostatische Felder	29
1.2.1. Allgemeine Bemerkungen	29
1.2.2. Lösungen für elektrostatische Feldanordnungen mit Hilfe der inte-	
gralen Maxwell-Gleichungen	31
1.2.2.1. Kugelsymmetrische Anordnungen und deren Superposition	
1.2.2.2. Zylindersymmetrische Anordnungen und deren Superpositi	on 41
1.2.3. Lösungen für elektrostatische Feldanordnungen mit Hilfe des Coulomb-Integrals	51
Coulomb-Integrals	
gration der Laplace- bzw. Poisson-Gleichung	
1.2.4.1. Zweidimensionale Felder	
1.2.4.1.1. Lösungen in kartesischen Koordinaten, S. 58. – 1.2.4.1.2	
Lösungen in ebenen Polarkoordinaten, S. 62.	
1.2.4.2. Dreidimensionale Felder	
1.2.4.2.1. Lösungen in kartesischen Koordinaten, S. 66. – 1.2.4.2.1	2.
Lösungen in Zylinderkoordinaten, S. $68 1.2.4.2.3$. Lösungen in Kugelkoordinaten bei axialer Symmetrie, S. 73 .	
1.2.5. Die Methode des elektrischen Bildes	79
1.2.6. Funktionentheoretische Behandlung zweidimensionaler Felder	
1.2.7. Die elektrische Polarisation	
1.3. Magnetostatische Felder	
1.3.1. Allgemeine Grundlagen	
1.3.2. Berechnung des magnetostatischen Feldes mit Hilfe des Coulomb-	93
Integrals	
1.3.3. Berechnung magnetostatischer Felder durch Integration der Laplac Gleichung $\Delta \psi = 0$	
1.3.4. Das Feld eines magnetischen Blattes	.103

1.4. Stationäre Felder	108
1.4.1. Allgemeines	108
1.4.2. Analogie zur Elektrostatik bei "räumlichen" Strömen	111
1.4.3. Das Durchflutungsgesetz	113
1.4.4. Bestimmung des Magnetfeldes über das Vektorpotential	115
1.4.5. Das Biot-Savartsche Gesetz	119
1.4.6. Das Magnetfeld einer Stromschleife in der Darstellung des Magnetfeldes eines magnetischen Blattes	121
1.4.7. Magnetische Feldenergie von stromdurchflossenen Leitern; Induktionskoeffizienten	127
1.4.8. Näherungsberechnung von Induktionskoeffizienten über den magne-	
tischen Fluß	131
1.4.9. Energietransport längs Leitungen	135
1.5. Quasistationäre Felder	137
1.5.1. Allgemeine Grundlagen	137
1.5.2. Grundgleichungen der Theorie des Skin-Effektes und der Wirbel-	
14 nod ströme	139
1.5.3. Die Stromverdrängung (Skin-Effekt)	142
1.5.3.1. Der Skin-Effekt in einem kreiszylindrischen Leiter	142
1.5.3.2. Der Skin-Effekt in einem Leiterband	146
1.5.4. Wirbelströme in einem Metallzylinder	149
1.6. Schnellveränderliche Felder	152
1.6.1. Allgemeine Grundlagen	152
1.6.2. Freie Ausbreitung von Wellen in homogenen und isotropen Nicht-	
leitern (ebene Wellen)	156
1.6.3. Die Hertzsche Dipollösung (Kugelwellen)	164
1.6.4. Zur Symmetrie der Maxwell-Gleichungen in einem homogenen Dielektrikum	169
2. Zur Maxwellschen Theorie in bewegter Materie	172
2.1. Die Kraft des elektromagnetischen Feldes auf bewegte Ladungen	172
2.2. Das Induktionsgesetz für bewegte Körper	174
Weiterführendes Schrifttum (Auswahl)	180
Sachverzeichnis	181