Entropy in relation to incomplete knowledge

K. G. DENBIGH

Honorary Research Fellow, Chelsea College University of London

J. S. DENBIGH

Mathematician, St George's Hospital Medical School, London

CAMBRIDGE UNIVERSITY PRESS

Cambridge London New York New Rochelle Melbourne Sydney

CONTENTS

n <i>c</i>	
Hustaga	3733
rrvuu.v	v I I
I / C/ACC	

1	Is entropy subjective in thermodynamics?	
1.1	Introduction	1
1.2	Objectivity and subjectivity	5
1.3	Thermodynamic entropy	9
1.4	The increase of entropy	14
2	Is entropy subjective in statistical mechanics?	
2.1	Introduction	18
2.2	A survey of quantum mechanics	19.
	2.2.1 States of a system	19
	2.2.2 Observables	21
	2.2.3 Eigenvalues and eigenvectors	22
	2.2.4 The Hamiltonian	24
	2.2.5 Review	25
2.3	The assumptions of equilibrium statistical mechanics	27
2.4	Outline of the results	39
2.5	Entropy, 'disorder' and 'ignorance'	43
2.6	Is entropy a property?	47
3	Coarse graining	
3.1	Introduction	49
3.2	Gibbs' treatment of irreversibility	51
3.3	The generalised H-theorem	53
3.4	Coarse graining reviewed	55
3.5	An apparent inconsistency in the theoretical system	57
3.6	Irreversible processes for which coarse graining can be	
	dispensed with	61
3.7	The example of chemical reaction	62
3.8	Review	66
4	Identity and indistinguishability	
4.1	Introduction	69
4.2	The additivity of the entropy of gases	70
43	Gibbs' Paradox	74

Contents	5
----------	---

4.4	A resolution of the Paradox	78
4.5	A quantal resolution of the Paradox as applied to 'states'	84
4.6	Identity, non-individuality and indistinguishability	85
4.7	The symmetry restrictions	90
4.8	Bose-Einstein (BE) and Fermi-Dirac (FD) statistics	94
4.9	From indistinguishability to distinguishability	97
5	Entropy and information theory	
5.1	Introduction	101
5.2	Shannon's measure	101
5.3	Jaynes' Principle and statistical mechanics	105
5.4	Brillouin's Negentropy 'Principle'	108
5.5	Fluctuations and correlations	112
5.6	Conclusions	117
Арр	endices	
	Appendix to Chapter 2	
2.1	The quantum axioms	119
2.2	Equal a priori probabilities and random phases	129
2.3	The derivation of the canonical distribution from the	
	microcanonical distribution	133
2.4	The statistical mechanical analogues of work and heat	137
	Appendix to Chapter 3	
3.1	Correlation, relaxation and spin echo	140
3.2	The generalised H-theorem	144
•	Appendix to Chapter 4	
4.1	The free energy and entropy of mixing	145
4.2	The convergence of classical and quantal statistics	148
	Notes	151
	References	157
	Index	162

vi