VERIFICATION of **COMPUTER CODES** in COMPUTATIONAL SCIENCE and **ENCINEERINC Patrick Knupp** Kambiz Salari

A CRC Press Company Boca Raton London New York Washington, D.Ç.

Contents

Chapter 1	Introduction to code verification	1
Chapter 2	2 The mathematical model and numerical algorithm	7
2.1	The mathematical model	7
2.2	Numerical methods for solving differential equations	10
	2.2.1 Terminology	10
	2.2.2 A finite difference example	11
	2.2.3 Numerical issues	12
	2.2.3.1 Lax equivalence theorem	13
	2.2.3.2 Asymptotic regime	13
	2.2.3.3 The discrete system	14
	2.2.4 Code order verification	16
	2.2.4.1 Definition: Code order verification	16
Chapter 3	3 The order-verification procedure (OVMSP)	19
3.1	Static testing	19
3.2	Dynamic testing	20
3.3	Overview of the order-verification procedure	21
3.4	Details of the procedure	23
	3.4.1 Getting started (Steps 1-3)	23
	3.4.2 Running the tests to obtain the error (Steps 4–5)	24
	3.4.2.1 Calculating the global discretization error	24
	3.4.2.2 Refinement of structured grids	26
	3.4.2.3 Refinement of unstructured grids	28
	3.4.3 Interpret the results of the tests (Steps 6–10)	29
3.5	Closing remarks	33
Chapter 4	Design of coverage test suite	35
4 1	Basic design issues	35
4.2	Coverage issues related to boundary conditions	38
4.2	Coverage issues related to grids and grid refinement	
4.5	Coverage issues related to grids and grid reinfement	
Chapter 5	5 Finding exact solutions	41
5.1	Obtaining exact solutions from the forward problem	41
5.2	The method of manufactured exact solutions	43

	5.2.1	Guidelines for creating manufactured solutions	44
	5.2.2	Guidelines for construction of the coefficients	45
	5.2.3	Example: Creation of a manufactured solution	46
	5.2.4	Treatment of auxiliary conditions	48
		5.2.4.1 Treatment of the initial condition	48
		5.2.4.2 Treatment of the problem domain	49
		5.2.4.3 Treatment of the boundary conditions	49
	5.2.5	A closer look at source terms	54
		5.2.5.1 Heat equation with no source term	55
		5.2.5.2 Steady incompressible flow with no	
		source term	56
		5.2.5.3 Closing remarks on source terms	58
	5.2.6	Physical realism of exact solutions	58
Chanter	6 Bend	efits of the order-verification procedure	59
6.1	A taxo	nomy of coding mistakes	59
6.2	A sim	ple PDE code	62
6.3	Blind	tests	65
0.0	Dinita		
Chapter	7 Rela	ted code-development activities	69
7.1	Nume	erical algorithm development	69
7.2	Testin	g for code robustness	70
7.3	Testin	g for code efficiency	71
7.4	Code	confirmation exercises	71
7.5	Soluti	on verification	72
7.6	Code	validation	73
7.7	Softw	are quality engineering	74
Chapter	8 Sam	ple code-verification exercises	75
8.1	Burge	rs' equations in Cartesian coordinates (Code 1)	75
	8.1.1	Steady solution with Dirichlet boundary conditions	76
	8.1.2	Steady solution with mixed Neumann	
		and Dirichlet conditions	77
8.2	Burge	rs' equations in curvilinear coordinates (Code 2)	79
	8.2.1	Steady solution	80
	8.2.2	Unsteady solution	80
8.3	Incom	pressible Navier-Stokes (Code 3)	82
8.4	Comp	ressible Navier-Stokes (Code 4)	84
Chapter	9 Adv	anced tonics	89
9.1	Comr	uter platforms	89
9.2	Looki	in tables	
9.3	Autor	natic time-stepping options	
9.4	Hardy	wired boundary conditions	
9.5	Codes	with artificial dissipation terms	
9.6	Eigen	value problems	
2.0		r	

9.7 9.8	Solution uniqueness	4
9.9	Codes with shock-capturing schemes9	6
9.1	D Dealing with codes that make nonordered approximations9	7
Chapter	10 Summary and conclusions9	19
Referen	ces10	13
Append	ix I: Other methods for PDE code testing10	17
Append	ix II: Implementation issues in the forward approach	.1
Append	ix III: Results of blind tests11	.3
Append	ix IV: A manufactured solution to the free-surface	
porous	media equations13	3
Index		7