Differential Forms on Singular Varieties

De Rham and Hodge Theory Simplified

Vincenzo Ancona

University of Firenze Florence, Italy

Bernard Gaveau

University Pierre et Marie Curie Paris, France

Contents

I Classical Hodge theory

1	Spe	ectral	sequences and mixed Hodge structures
	1.1	Intro	duction
	1.2	Filtra	tions
	1.3	Strict	morphisms
	1.4	Filtere	ed complexes
	1.5	Spectr	ral sequences
	1.6	The f	first term of the spectral sequence
	1.7	The g	raded cohomology
	1.8	Pure	Hodge structures
	1.9	Morpl	hisms of pure Hodge structures
	1.10	Mixe	d Hodge structures
	1.11	Exac	t sequences of mixed Hodge structures
	1.12	Shifte	ed complexes and shifted filtrations
	1.13	The s	trictness of d and the degeneration of the spectral se-
		quenc	e
	1.14	Flat :	modules
	1.15	Conne	ecting homomorphisms
2	Con	nplex	manifolds, vector bundles, differential forms
	2.1	Introc	
	2.2	Comp	lex manifolds
		2.2.1	Definitions of complex coordinates and manifolds
		2.2.2	Tangent vectors
		2.2.3	Holomorphic functions
		2.2.4	Complex submanifolds
		2.2.5	Examples
	2.3	Comp	lex vector bundles and divisors
		2.3.1	Operations on bundles
	`	2.3.2	Tangent bundle
		2.3.3	Example: complex tori
		2.3.4	Line bundles and divisors
		2.3.5	Example: \mathbb{P}^n and its line bundles
	2.4	Differ	ential forms on complex manifolds
		2.4.1	Expressions in local coordinates

- -

1

		2.4.2	The Hodge filtrations F and \overline{F}	33		
		2.4.3	Pullback	33		
		2.4.4	Exterior differentials	35		
		2.4.5	Exterior differentials and pullback	36		
		2.4.6	Differentials and exterior products	36		
		2.4.7	Forms with coefficients in a vector bundle	36		
	2.5	Local s	solutions of d - and $\bar{\partial}$ -equations	38		
		2.5.1	Poincaré lemma	38		
		2.5.2	Dolbeault lemma	39		
		2.5.3	Poincaré lemma for holomorphic forms	39		
3	Sheaves and cohomology 41					
	3.1	Sheave	25	41		
	3.2	The co	bhomology of sheaves	45		
		3.2.1	The canonical flabby sheaf $\mathcal{C}^0\mathcal{F}$ associated to a given			
			sheaf \mathcal{F}	46		
		3.2.2	Resolutions of sheaves	47		
		3.2.3	Cohomology of sheaves	47		
	3.3	The co	bhomology sequence associated to a closed subspace	51		
	3.4	Soft ar	nd fine sheaves	53		
	3.5	Direct	images of sheaves	54		
	3.6	$\mathbb{C} ext{-ring}$	ged spaces	55		
	3.7	Cohere	ent sheaves	58		
4	Har	monic	forms on hermitian manifolds	63		
	4.1	Introd	uction	63		
	4.2	Herm	itian metrics on an exterior algebra	64		
		4.2.1	Hermitian forms on a complex vector space	64		
		4.2.2	The exterior algebra of V^*	<u>)</u> 66		
		4.2.3	Volume form	66		
		4.2.4	Metrics on $\Lambda^{p,q}$	67		
		4.2.5	The *-operator	68		
		4.2.6	Determination of * in an orthonormal basis	69		
	4.3	Hermi	tian metrics on a complex manifold	70		
		4.3.1	Application of the results of section 4.2	71		
	4.4	Adjoin	its of d , ∂ , $\bar{\partial}$. De Rham-Hodge Laplacian	72		
	1.1	441	De Bham-Hodge operators	74		
	45	Hermi	tian metrics and Laplacian for holomorphic bundles	75		
	1.0	151 151	Metrics on forms with coefficients in a bundle	76		
		459	The adjoint of $\bar{\partial}$	76		
		459	Do Dhom Hodro I aplace operator for holomorphic hup	10		
		4.0.0	dles	77		
	16	Hannes	ules	11		
	4.0		Juic forms and conformation manifold	10 70		
		4.0.1	marmonic forms on compact normitian manifold	10		
		4 n 2	The case of holomorphic publies	19		

4.781 Duality . 4.7.1Poincaré duality 81 4.7.2Serre duality 81 Application to modifications 4.7.383 Hodge theory on compact kählerian manifolds 5 85 5.1Introduction 85 5.2Kählerian manifolds 86 5.2.186 5.2.288 5.389 Local kählerian geometry 5.3.189 5.3.2Covariant derivatives of differential forms 93 5.3.394 The equality of the De Rham-Hodge Laplacians . . . 5.3.4955.4The Hodge decomposition on compact kählerian manifolds 96 5.4.1Harmonic forms on compact kählerian manifolds . . . 96 The pure Hodge structure on cohomology 97 5.598 5.5.1The case of closed forms of pure type 5.5.2100The theory of residues on a smooth divisor 103 6 6.1Introduction 1036.2Forms with logarithmic singularities 1036.3The long exact homology residue sequence 1056.3.1The long exact homology sequence 1066.3.2106 6.4 The residue sequence in cohomology and the Gysin morphism 107 6.4.1107 6.4.2Construction of the Gysin morphism 108 111 7 **Complex spaces** 7.1Complex analytic varieties and complex spaces 111 7.2114 Modifications and blowing-up 7.31157.4Algebraic and projective varieties, Moishezon spaces 118 1227.5(B)-Kähler spaces 7.6Semianalytic and subanalytic sets 124The Borel-Moore homology of a complex space 1277.77.8Subanalytic chains 129132 7.9Integration of forms on complex subanalytic chains

xv

7.10 The Mayer-Vietoris sequence for modifications 133

Π	D	ifferer	ntial forms on complex spaces	135
1	The basic example			137
	1.1	Introdu	uction	137
	1.2	A resol	lution of \mathbb{C}_X	138
	1.3	The we	eight filtration W	142
	1.4	The sp	ectral sequence of the filtration W	143
	1.5	The fil	trations \hat{F}^p and \bar{F}^q	145
	1.6	Mixed	Hodge structures on the cohomology and on the spectral	
		sequen	ce	146
	1.7	Chains	and homology	148
	1.8	Integra	ation of forms on chains	149
2	Diff	erentia	l forms on complex spaces	151
	2.1	Introdu	uction	151
	2.2	Definit	ions and statements	153
		2.2.1	Definition of the family $\mathcal{R}(X)$	153
		2.2.2	Construction-existence theorem	155
		2.2.3	Definition of a primary pullback for irreducible spaces	156
		2.2.4	Definition of a pullback morphism: the general case .	157
		2.2.5	Existence of primary pullback (the irreducible case) .	160
		2.2.6	Uniqueness of primary pullback (the irreducible case)	161
		2.2.7	Existence of pullback: the general case	161
		2.2.8	Uniqueness of pullback: the general case	161
		2.2.9	Composition of primary pullback (the irreducible case)	161
		2.2.10	Composition of pullback: the general case	161
		2.2.11	The filtration property	161
	2.3	The in	duction procedure	162
	2.4	The pr	roofs	162
		2.4.1	Proof of theorem 2.7: composition of primary pullback (the impeduaible age)	164
		949	Proof of theorem 2.8: composition of pullback (the gap	104
		2.4.2	oral case)	165
		919	Proof of theorem 2.1, construction existence	167
		2.4.3	Proof of theorem 2.2: existence of primary pullback (the	101
		2.4.4	irreducible case)	169
		2.4.5	Proof of theorem 2.4: uniqueness of the primary pull-	200
			back (the irreducible case)	172
		2.4.6	Proof of theorem 2.5: existence of pullback (the general	
			case)	174
		2.4.7	Proof of theorem 2.6: uniqueness of the pullback (the	
			general case)	176
		2.4.8	Proof of theorem 2.9: filtering	177
	2.5	Kähler	hypercoverings	177
	2.6	Chains	and homology	178

xvi

	2.7	Integration of forms on chains	180
	2.8	The complex of Grauert and Grothendieck	181
3	Mix	ed Hodge structures on compact spaces	183
	3.1	Introduction	183
	3.2	Filtration by the degree: the weight filtration	184
	3.3	The weight filtration in cohomology	186
	3.4	The action of d on the filtered complexes $\ldots \ldots \ldots \ldots$	186
	3.5	The first term of the spectral sequence	189
	3.6	The second term of the spectral sequence	190
	3.7	Computation of d_r	192
	3.8	The filtrations F^p and \overline{F}^q	194
	3.9	Pure Hodge structures on the spectral sequence	195
	3.10	The Hodge filtrations on $E_r^{m,k}$	199
	3.11	The mixed Hodge structure on the cohomology	202
	3.12	The Mayer-Vietoris sequence	203
	3.13	The differential d is a strict morphism for the filtration F^p .	205
Π	IN	Mixed Hodge structures on noncompact spaces	209
1	Resi	idues and Hodge mixed structures: Leray theory	2 11
	11	Introduction	611
	T + T		211
	$1.1 \\ 1.2$	The standard logarithmic De Rham complex	$\frac{211}{213}$
	$1.1 \\ 1.2$	The standard logarithmic De Rham complex $\dots \dots \dots \dots$ 1.2.1 Definition of $\mathcal{E}_X \langle \log D \rangle$ $\dots \dots \dots \dots \dots \dots \dots$	211 213 213
	1.2	The standard logarithmic De Rham complex \dots	211 213 213 213
	1.1 1.2 1.3	The standard logarithmic De Rham complex $\dots \dots \dots \dots$ 1.2.1 Definition of $\mathcal{E}_X \langle \log D \rangle \dots \dots \dots \dots \dots \dots \dots$ 1.2.2 Filtration by the order of poles $\dots \dots \dots \dots \dots \dots \dots$ Residues (classical Leray theory) $\dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$	211 213 213 213 213 215
	1.1 1.2 1.3	The standard logarithmic De Rham complex \dots	211 213 213 213 213 215 215
	1.1 1.2 1.3	The standard logarithmic De Rham complex	211 213 213 213 213 215 215 217
	1.2	IntroductionIntroductionThe standard logarithmic De Rham complexImage: Standard Logarithmic De Rham complex1.2.1Definition of $\mathcal{E}_X \langle \log D \rangle$ Image: Standard Logarithmic De Rham complex1.2.2Filtration by the order of polesImage: Standard Logarithmic De Rham complex1.2.2Filtration by the order of polesImage: Standard Logarithmic De Rham complex1.3.1The residues in local cohomologyImage: Standard Logarithmic De Rham complex1.3.2The residues in global cohomologyImage: Standard Logarithmic De Rham complex1.3.3The cohomology of $X \setminus D$ Image: Standard Logarithmic De Rham complex	211 213 213 213 213 215 215 215 217 218
	1.1 1.2 1.3	The standard logarithmic De Rham complex	211 213 213 213 213 215 215 215 217 218
	1.1 1.2 1.3	The standard logarithmic De Rham complex	 211 213 213 213 215 215 217 218 219
	1.1 1.2 1.3	The standard logarithmic De Rham complex	211 213 213 213 215 215 215 217 218 219 219
	1.2 1.3 1.4	The standard logarithmic De Rham complex	211 213 213 213 215 215 215 217 218 219 219 221
•	1.1 1.2 1.3	The standard logarithmic De Rham complex	211 213 213 213 215 215 215 217 218 219 221 221 224
	1.2 1.3 1.4	The standard logarithmic De Rham complex	211 213 213 213 215 215 215 217 218 219 219 221 224 225
	1.1 1.2 1.3	The standard logarithmic De Rham complex 1.2.1 Definition of $\mathcal{E}_X \langle \log D \rangle$ 1.2.2 Filtration by the order of poles Residues (classical Leray theory) 1.3.1 The residues in local cohomology 1.3.2 The residues in global cohomology 1.3.3 The cohomology of $X \setminus D$ Residues and mixed Hodge structures (the case of a smooth divisor) 1.4.1 Hodge filtrations and residues 1.4.2 Pure Hodge structure on $E_1^{l,k} = E_1^{l,k}(X)$ 1.4.3 Mixed Hodge structure on $H^k(X \setminus D, \mathbb{C})$ 1.4.4 Functoriality	 211 213 213 215 215 217 218 219 219 221 224 225 226
2	1.1 1.2 1.3 1.4 Res	The standard logarithmic De Rham complex 1.2.1 Definition of $\mathcal{E}_X \langle \log D \rangle$ 1.2.2 Filtration by the order of poles Residues (classical Leray theory) 1.3.1 The residues in local cohomology 1.3.2 The residues in global cohomology 1.3.3 The cohomology of $X \setminus D$ Residues and mixed Hodge structures (the case of a smooth divisor) 1.4.1 Hodge filtrations and residues 1.4.2 Pure Hodge structure on $E_1^{l,k} = E_1^{l,k}(X)$ 1.4.3 Mixed Hodge structure on $H^k(X \setminus D, \mathbb{C})$ 1.4.4 Functoriality 1.4.5 Other residues	211 213 213 213 215 215 215 217 218 219 219 221 224 225 226
2	1.1 1.2 1.3 1.4 Resi	The standard logarithmic De Rham complex 1.2.1 Definition of $\mathcal{E}_X \langle \log D \rangle$ 1.2.2 Filtration by the order of poles Residues (classical Leray theory) 1.3.1 The residues in local cohomology 1.3.2 The residues in global cohomology 1.3.3 The cohomology of $X \setminus D$ Residues and mixed Hodge structures (the case of a smooth divisor) 1.4.1 Hodge filtrations and residues 1.4.2 Pure Hodge structure on $E_1^{l,k} = E_1^{l,k}(X)$ 1.4.3 Mixed Hodge structure on $H^k(X \setminus D, \mathbb{C})$ 1.4.4 Functoriality 1.4.5 Other residues	211 213 213 213 215 215 217 218 219 219 221 224 225 226 - 227
2	1.1 1.2 1.3 1.4 Resi fold 2.1	The standard logarithmic De Rham complex 1.2.1 Definition of $\mathcal{E}_X \langle \log D \rangle$ 1.2.2 Filtration by the order of poles Residues (classical Leray theory) 1.3.1 The residues in local cohomology 1.3.2 The residues in global cohomology 1.3.3 The cohomology of $X \setminus D$ Residues and mixed Hodge structures (the case of a smooth divisor) 1.4.1 Hodge filtrations and residues 1.4.2 Pure Hodge structure on $E_1^{l,k} = E_1^{l,k}(X)$ 1.4.3 Mixed Hodge structure on $H^k(X \setminus D, \mathbb{C})$ 1.4.4 Functoriality 1.4.5 Other residues	211 213 213 213 215 215 217 218 219 219 221 224 225 226 - 227 227
2	1.1 1.2 1.3 1.4 Res fold 2.1 2.2	The standard logarithmic De Rham complex 1.2.1 Definition of $\mathcal{E}_X \langle \log D \rangle$ 1.2.2 Filtration by the order of poles Residues (classical Leray theory) 1.3.1 The residues in local cohomology 1.3.2 The residues in global cohomology 1.3.3 The cohomology of $X \setminus D$ Residues and mixed Hodge structures (the case of a smooth divisor) 1.4.1 Hodge filtrations and residues 1.4.2 Pure Hodge structure on $E_1^{l,k} = E_1^{l,k}(X)$ 1.4.3 Mixed Hodge structure on $H^k(X \setminus D, \mathbb{C})$ 1.4.4 Functoriality 1.4.5 Other residues	211 213 213 213 215 215 217 218 219 221 224 225 226 227 227 229
2	1.1 1.2 1.3 1.4 Resi fold 2.1 2.2	The standard logarithmic De Rham complex 1.2.1 Definition of $\mathcal{E}_X \langle \log D \rangle$ 1.2.2 Filtration by the order of poles Residues (classical Leray theory) 1.3.1 The residues in local cohomology 1.3.2 The residues in global cohomology 1.3.3 The cohomology of $X \setminus D$ Residues and mixed Hodge structures (the case of a smooth divisor) 1.4.1 Hodge filtrations and residues 1.4.2 Pure Hodge structure on $E_1^{l,k} = E_1^{l,k}(X)$ 1.4.3 Mixed Hodge structure on $H^k(X \setminus D, \mathbb{C})$ 1.4.4 Functoriality 1.4.5 Other residues 1.4.5 Other residues 1.4.5 Difference for the standard logarithmic De Rham complex 2.2.1 Definition of $\mathcal{E}_X \langle \log D \rangle$	211 213 213 213 215 215 217 218 219 221 224 225 226 227 229 229 229
2	1.1 1.2 1.3 1.4 Resi fold 2.1 2.2	The standard logarithmic De Rham complex 1.2.1 Definition of $\mathcal{E}_X \langle \log D \rangle$ 1.2.2 Filtration by the order of poles Residues (classical Leray theory) 1.3.1 The residues in local cohomology 1.3.2 The residues in global cohomology 1.3.3 The cohomology of $X \setminus D$ Residues and mixed Hodge structures (the case of a smooth divisor) 1.4.1 Hodge filtrations and residues 1.4.2 Pure Hodge structure on $E_1^{l,k} = E_1^{l,k}(X)$ 1.4.3 Mixed Hodge structure on $H^k(X \setminus D, \mathbb{C})$ 1.4.4 Functoriality 1.4.5 Other residues 1.4.5 Other residues 1.4.5 Definition of $\mathcal{E}_X \langle \log D \rangle$ 2.2.1 Definition of $\mathcal{E}_X \langle \log D \rangle$	211 213 213 213 215 215 215 217 218 219 219 221 224 225 226 227 227 229 229 230

xvii

xviii

		2.2.4	The De Rham complex of a divisor	232
	2.3	Residu	es (smooth case)	233
		2.3.1	The residues in local cohomology	235
		2.3.2	The residues in global cohomology	237
		2.3.3	The cohomology of $X \setminus D$	237
	2.4	Residu	ues and mixed Hodge structures (the smooth case) .	239
		2.4.1	Hodge filtrations and residues	239
		2.4.2	Pure Hodge structure on $E_1^{l,k}(X)$	241
		2.4.3	Degeneration of the spectral sequence	245
	2.5	The st	rictness of d_0 and d with respect to the Hodge filtration	249
		2.5.1	The conjugate complex	249
		2.5.2	Strictness of d_0	251
		2.5.3	The recursive and the direct filtrations on $E_{k}^{l,k}(X)$.	253
		2.5.4	Strictness of d	257
3	Mix	ed Ho	odge structures on noncompact spaces: the basic	C
	exa	mple		259
	3.1	Introd	uction	259
	3.2	The st	andard logarithmic De Rham complex	260
		3.2.1	The cohomology of $X \setminus Q$	261
		3.2.2	Filtration W by the order of poles	263
	3.3	Residu	ues (quasi-smooth case)	264
	3.4	The re	esidue complex	266
	3.5	Residu	ies and mixed Hodge structures (quasi-smooth case) .	267
		3.5.1	Hodge filtrations and residues	267
		3.5.2	Pure Hodge structure on $E_1^{l,\kappa}(X)$	269
		3.5.3	The differential d_1	270
		3.5.4	The conjugate complex	272
		3.5.5	Degeneration of the spectral sequence	273
	N <i>G</i> •	1 77		
4	1VI1X 4 1	Tet no	age structures on noncompact singular spaces	277
	4.1	Introd Logani	the semular of singular spaces	211
	4.2	Logari	timic complexes on singular spaces	210
	4.9	4.2.1 TD	Logarithmic forms	218
	4.3	Ine w	eight nitration W	283
		4.0.1	On a logarithmic De Rham complex when A is smooth	200
		4.3.2	On a general logarithmic complex	284
	4.4	4.3.3 Decide	Filtration of the cohomology and spectral sequence	285
	4.4		Desidues on the model completes	201 997
		4.4.1	Clabel periduces on the fitner descentions	40 (000
	4 5	4.4.2	Giodal residues on the nitered complexes	289
	4.5	Kesid	ues and mixed Hodge structure (singular case)	290
		4.5.1	Shifted modge filtrations and residues $\dots \dots \dots$	290
		4.5.2	Fure nodge structure on E_1	293
		4.0.3	The dimerential a_1	294

$\begin{array}{c} 4.6 \\ 4.7 \end{array}$	Degeneration of the spectral sequence $\dots \dots \dots \dots \dots$ Strictness of d	297 302
Refere	nces	307