Coding Theory and Number Theory

by

Toyokazu Hiramatsu

Hosei University, Tokyo, Japan

and

Günter Köhler

Würzburg University, Würzburg, Germany

KLUWER ACADEMIC PUBLISHERS DORDRECHT / BOSTON / LONDON

Contents

Pr	Preface					
1.	LINEAR CODES			1		
	1	Coding	g Theory	1		
	2	Linear	codes	4		
	3	Cyclic	codes	7		
	4	Finite	fields	13		
	5	BCH c	odes	14		
2.	DIOPHANTINE EQUATIONS AND CYCLIC CODES			17		
-	1	Diagor	al equations over finite fields	17		
	2	The nu codes	mber of solutions and weight distributions of cyclic	18		
3.	ELLIPTIC CURVES, HECKE OPERATORS AND WEIGHT DISTRIBUTION OF CODES			23		
	1	Elliptic	c curves over finite fields	23		
		1.1	The group law	24		
		1.2	Hasse's theorem	27		
	2	Modul	ar forms and Hecke operators	29		
		2.1	$SL_2(\mathbf{Z})$ and its congruence subgroups	29		
		2.2	The upper half-plane	30		
		2.3	Modular forms and cusp forms	30		
		2.4	Hecke operators	32		
	3	Weight	distribution of linear codes	35		
		3.1	The MacWilliams identities and Delsarte's theorem	35		
		3.2	The weight distribution of the Melas codes	39		

4.			IC-GEOMETRIC CODES AND CURVE CODES	49		
	1	Classic	al Goppa codes	49		
		1.1	The basic idea	49		
		1.2	Basic properties of $\Gamma(L,g)$	51		
	2	Algebr	aic curves	52		
		2.1	Affine varieties and projective varieties	52		
		2.2	Divisors of algebraic curves	55		
	3	The ze	ta functions of curves and rational points	58		
		3.1	Basic properties of the zeta functions	58		
		3.2	Maximum number of rational points	61		
	4	Algebr	aic-geometric codes	62		
		4.1	Algebraic-geometric codes of the first kind	62		
		4.2	Algebraic-geometric codes of the second kind	65		
	5	Modula	ar curves and codes	66		
		5.1	Modular curves and their reduction modulo p	67		
		5.2	Proof of Theorem 4.8	69		
		5.3	Asymptotic bounds	72		
5.	THETA FUNCTIONS AND SELF-DUAL CODES					
	1	Lattice	es and codes	77		
		1.1	Lattices	77		
		1.2	Constructing lattices from binary codes	81		
		1.3	Examples	83		
		1.4	The lattices associated to a code and the dual code	91		
	2	Theta	functions and weight distributions	92		
		2.1	The theta function of a lattice	92		
		2.2	The MacWilliams identity	101		
	3	Doubly-even self-dual codes				
		3.1	The weight enumerator of doubly-even self-dual codes	105		
		3.2	The extended Golay code	108		
		3.3	The Leech lattice	112		
Ar	pend	ix		116		
The Kloosterman Codes and Distribution of the Weights						
	1	Introdu	uction	117		

Conten	ats	vii
2	Melas code and Kloosterman sums	119
3	Hyper-Kloosterman code	122
4	Quasi-cyclic property	126
5	Weight distribution	128
6	Minimum distance of $C_m(q)$	133
7	A divisibility theorem for Hamming weights	136
Refere	141	
Index	145	