Advances in the Complex Variable Boundary Element Method

With 157 Figures

Contents

~ .

Chapter 1.	Overview of the Complex Variable Boundary Element Method (CVBEM)	1
1.1.	Introduction	1
1.2.	A Complex Variable Boundary Element Model Using Linear Polynomial Trial Functions	1
1.3	The Analytic Function Defined by The Approximator $\widehat{\omega}(z)$	16
1.4.	A Constant Boundary Element Method	19
1.5.	The Complex Variable Boundary Element Method	22
1.6.	Approximation Error From the CVBEM	26
1.7.	A Strategy to Reduce Approximation Error	29
1.8.	Expansion of the <i>H</i> _k Approximation Function	31
1.9.	Upper Half Plane Boundary Value Problems	41
1.10.	The Approximate Boundary for Error Analysis	45
1.11.	Adding Nodal Points on F	49
1.12.	Sources and Sinks	58
1.13.	Regional Inhomogeneity	59
1.14.	The Poisson Equation	61
1.15.	The Best Approximation Method and the CVBEM	62

Chapter 2	. Advanced CVBEM Topics	67
2.3	1. Variable Basis Functions	67
2.2	2. Higher-Order Basis Functions	82
2.:	3. Multiply Connected Domains	99
2.4	4. Application of the CVBEM To Multiply Connected Regions	107
2.	 Linking The Analytic Function Method to the CVBEM 	120
2.0	 Complex Polynomial Approximation of the Laplace Equation 	127
2.1	 Complex Variable Boundary Element Method (CVBEM): A Hilbert Space Setting 	131
2.8	 Complex Polynomial Approximation of Two- Dimensional Potential Problems Using Generalized Fourier Series 	149
2.9	9. Best Approximation of Two-Dimensional Potential Problems Using the CVBEM	153
Chapter 3	. Applications of the CVBEM in Mathematics, Science and Engineering	157
3.	1. Theoretical Background of the CVBEM	159
3.2	Application of the CVBEM to Non-Uniform St. Venant Torsion	170
3.:	 Modeling Complex Two-Dimensional Potential Flows 	178
3.4	 Complex Variable Boundary Element Solution of Groundwater Contaminant Transport 	184
3.	5. Modeling Steady-State, Advective Contaminant Transport	195

	3.6.	Comparison of Two-Dimensional Finite Element and CVBEM Geothermal Models With Embankment Freeze-Thaw Field Data	207
	3.7.	CVBEM Modeling of Tracking Two- Dimensional Freezing Fronts in Algid Soil	216
	3.8.	Analyzing Numerical Errors in Domain Heat Transport Models Using the CVBEM	224
	3.9.	A Complex Polynomial Model of Ice Segregation	231
	3.10.	Approximation of Slow-Moving Interface Phase Change Problems	247
	3.11.	Solution of Parabolic Equations Using an Eigenvalue Method for Time Advancement	250
Chapter 4.		Topics in Numerical Analysis	262
	4.1.	Expansion of the CVBEM Into a Series Using Fractals	262
	4.2.	An Expansion of the CVBEM Matrix System	269
	4.3.	Complex Logarithms, Cauchy Principal Values, and the Complex Variable Boundary Element Method	272
	4.4.	Numerical Solution of the Dirichlet Problem Via a Density Theorem	287
	4.5.	The Existence of Approximate Solutions for Two Dimensional Potential Flow Problems	301
Chapter 5.		Numerical Error Analysis	314
	5.1.	Error Bounds for Numerical Solution of Partial Differential Equations	314
	5.2.	Complex Variable Boundary Element Solution of Potential Flow Problems Using Taylor Series for Error Analysis	322

xiii

5.3.	Locating CVBEM Collocation Points	341
5.4.	Reducing Relative Error From the CVBEM by an Iteration Technique	355
5.5.	Determining Relative Error Bounds for the CVBEM	363
5.6.	CVBEM Error Reduction Using the Approximate Boundary Method	371

References

× . . 381

xiv