PATTERN THEORY: FROM REPRESENTATION TO INFERENCE

Ulf Grenander and Michael I. Miller

CONTENTS

1	Intro 1.1	duction Organization	1 3
2	The	Bayes Paradigm, Estimation and Information Measures	5
	2.1	Bayes Posterior Distribution	5
		2.1.1 Minimum Risk Estimation	6
		2.1.2 Information Measures	7
	2.2	Mathematical Preliminaries	8
		2.2.1 Probability Spaces, Random Variables, Distributions,	
		Densities, and Expectation	8
		2.2.2 Transformations of Variables	10
		2.2.3 The Multivariate Normal Distribution	10
		2.2.4 Characteristic Function	11
	2.3	Minimum Risk Hypothesis Testing on Discrete Spaces	12
		2.3.1 Minimum Probability of Error via Maximum A Posteriori	
		Hypothesis Testing	13
		2.3.2 Neyman–Pearson and the Optimality of the Likelihood Ratio Test	14
	2.4	Minimum Mean-Squared Error Risk Estimation in Vector Spaces	16
		2.4.1 Normed Linear and Hilbert Spaces	17
		2.4.2 Least-Squares Estimation	20
		2.4.3 Conditional Mean Estimation and Gaussian Processes	22
	2.5	The Fisher Information of Estimators	24
	2.6	Maximum-Likelihood and its consistency	26
		2.6.1 Consistency via Uniform Convergence of Empirical Log-likelihood	27
		2.6.2 Asymptotic Normality and \sqrt{n} Convergence Rate of the MLE	28
	2.7	Complete–Incomplete Data Problems and the EM Algorithm	30
	2.8	Hypothesis Testing and Model Complexity	38
		2.8.1 Model-Order Estimation and the $d/2 \log$ Sample-Size Complexity	38
		2.8.2 The Gaussian Case is Special	41
	20	2.8.3 Model Complexity and the Gaussian Case	42
	2.9	Building Probability Models via the Principle of Maximum Entropy	43
		2.9.1 Principle of Maximum Entropy	44
		2.9.2 Maximum Entropy Models2.9.3 Conditional Distributions are Maximum Entropy	45 47
		2.9.3 Conditional Distributions are Maximum Entropy	47
3	Prob	abilistic Directed Acyclic Graphs and Their Entropies	49
	3.1	Directed Acyclic Graphs (DAGs)	49
	3.2	Probabilities on Directed Acyclic Graphs (PDAGs)	51
	3.3	Finite State Markov Chains	54
	3.4	Multi-type Branching Processes	56
		3.4.1 The Branching Matrix	59
		3.4.2 The Moment-Generating Function	60
	3.5	Extinction for Finite-State Markov Chains and Branching Processes	62
		3.5.1 Extinction in Markov Chains	62
	a <i>ć</i>	3.5.2 Extinction in Branching Processes	63
	3.6	Entropies of Directed Acyclic Graphs	64
	3.7	Combinatorics of Independent, Identically Distributed Strings via the	65
		Aymptotic Equipartition Theorem	65

v

	3.8	Entropy and Combinatorics of Markov Chains	66
	3.9	Entropies of Branching Processes	68
		3.9.1 Tree Structure of Multi-Type Branching Processes	69
		3.9.2 Entropies of Sub-Critical, Critical, and Super-Critical Processes	70
		3.9.3 Typical Trees and the Equipartition Theorem	71
		Formal Languages and Stochastic Grammars	74
	3.11	DAGs for Natural Language Modelling	81
		3.11.1 Markov Chains and <i>m</i> -Grams	81
		3.11.2 Context-Free Models	82
		3.11.3 Hierarchical Directed Acyclic Graph Model	84
	3.12	EM Algorithms for Parameter Estimation in Hidden	
		Markov Models	87
		3.12.1 MAP Decoding of the Hidden State Sequence	88
		3.12.2 ML Estimation of HMM parameters via EM Forward/Backward	
		Algorithm	89
	3.13	EM Algorithms for Parameter Estimation in Natural	
		Language Models	92
		3.13.1 EM Algorithm for Context-Free Chomsky Normal Form	93
		3.13.2 General Context-Free Grammars and the Trellis Algorithm	
		of Kupiec	94
4	Marl	cov Random Fields on Undirected Graphs	95
	4.1	Undirected Graphs	95
	4.2	Markov Random Fields	96
	4.3	Gibbs Random Fields	101
	4.4	The Splitting Property of Gibbs Distributions	104
	4.5	Bayesian Texture Segmentation: The log-Normalizer Problem	110
		4.5.1 The Gibbs Partition Function Problem	110
	4.6	Maximum-Entropy Texture Representation	112
		4.6.1 Empirical Maximum Entropy Texture Coding	113
	4.7	Stationary Gibbs Random Fields	116
		4.7.1 The Dobrushin/Lanford/Ruelle Definition	116
		4.7.2 Gibbs Distributions Exhibit Multiple Laws with the Same Interactions	
		(Phase Transitions): The Ising Model at Low Temperature	117
	4.8	1D Random Fields are Markov Chains	119
	4.9	Markov Chains Have a Unique Gibbs Distribution	120
	4.10	Entropy of Stationary Gibbs Fields	121
5	Can	ssian Random Fields on Undirected Graphs	123
5	5.1	Gaussian Random Fields	123
	5.2	Difference Operators and Adjoints	124
	5.3	Gaussian Fields Induced via Difference Operators	126
	5.4	Stationary Gaussian Processes on \mathbb{Z}^d and their Spectrum	133
	5.5	Cyclo-Stationary Gaussian Processes and their Spectrum	134
	5.6	The log-Determinant Covariance and the Asymptotic Normalizer	137
	0.0	5.6.1 Asymptotics of the Gaussian processes and their Covariance	138
		5.6.2 The Asymptotic Covariance and log-Normalizer	142
	5.7	The Entropy Rates of the Stationary Process	142
	0.1	5.7.1 Burg's Maximum Entropy Auto-regressive Processes on \mathbb{Z}^d	142
	5.8	Generalized Auto-Regressive Image Modelling via Maximum-Likelihood	143
		Estimation	144
		5.8.1 Anisotropic Textures	147
		•	

CONT	ENTS
------	------

6	The	Canonic	al Representations of General Pattern Theory	154
	6.1		nerators, Configurations, and Regularity of Patterns	154
	6.2		nerators of Formal Languages and Grammars	158
	6.3		Transformations	162
	6.4		nonical Representation of Patterns: DAGs, MRFs, Gaussian Random Fields	166
		6.4.1	Directed Acyclic Graphs	167
		6.4.2		169
		6.4.3		170
-	Maha	in Course	-	174
7			p Actions Transforming Patterns	174
	7.1	-	s Transforming Configurations	174
		7.1.1 7.1.2	Similarity Groups	174
				175
	70	7.1.3	1	177
	7.2		Atrix Groups	177
			Linear Matrix and Affine Groups of Transformation	
		7.2.2	Matrix groups acting on \mathbb{R}^d	179
	7.3		ormations Constructed from Products of Groups	181
	7.4		m Regularity on the Similarities	184
	7.5		as Submanifolds and the Frenet Frame	190
	7.6		faces in \mathbb{R}^3 and the Shape Operator	195
		7.6.1	The Shape Operator	196
	7.7		Quadratic Charts and Curvatures on Surfaces	198
		7.7.1	Gaussian and Mean Curvature	198
		7.7.2	Second Order Quadratic Charts	200
		7.7.3	Q	201
	7.8	0	Curves and Crest Lines	205
		7.8.1		
			Triangulated Graphs	205
		7.8.2	Dynamic Programming	207
	7.9	Bijectic	ons and Smooth Mappings for Coordinatizing	
		Manifo	lds via Local Coordinates	210
8	Man	ifolds, A	Active Models, and Deformable Templates	214
	8.1		olds as Generators, Tangent Spaces, and Vector Fields	214
		8.1.1	Manifolds	214
		8.1.2	Tangent Spaces	215
		8.1.3	Vector Fields on M	217
		8.1.4	Curves and the Tangent Space	218
	8.2		h Mappings, the Jacobian, and Diffeomorphisms	219
		8.2.1	Smooth Mappings and the Jacobian	219
		8.2.2		221
	8.3		Groups are Diffeomorphisms which are a Smooth Manifold	222
		8.3.1	Diffeomorphisms	222
		8.3.2	Matrix Group Actions are Diffeomorphisms on the	
			Background Space	223
		8.3.3	The Matrix Groups are Smooth Manifolds (Lie Groups)	224
	8.4		Models and Deformable Templates as Immersions	226
		8.4.1	Snakes and Active Contours	226
		8.4.2	Deforming Closed Contours in the Plane	226
		8.4.3	Normal Deformable Surfaces	227
	8.5		ting Shapes in Deformable Models	229
		8.5.1	Likelihood of Shapes Partitioning Image	229
		8.5.2	A General Calculus for Shape Activation	229
			1	

vii

CONTENTS

		8.5.3	Active Closed Contours in \mathbb{R}^2	232
		8.5.4	Active Unclosed Snakes and Roads	234
		8.5.5	Normal Deformation of Circles and Spheres	236
		8.5.6	Active Deformable Spheres	236
	8.6	Level S	et Active Contour Models	237
	8.7	Gaussia	an Random Field Models for Active Shapes	240
9	Seco	nd Orde	er and Gaussian Fields	244
	9.1	Second	Order Processes (SOP) and the Hilbert Space of Random Variables	244
		9.1.1	Measurability, Separability, Continuity	244
		9.1.2	Hilbert space of random variables	247
		9.1.3	1	249
		9.1.4	Quadratic Mean Continuity and Integration	251
	9.2		onal Process Representations on Bounded Domains	252
		9.2.1	Compact Operators and Covariances	253
		9.2.2	Orthogonal Representations for Random Processes and Fields	257
	~ ^	9.2.3	Stationary Periodic Processes and Fields on Bounded Domains	258
	9.3		an Fields on the Continuum	262
	9.4		v Spaces, Green's Functions, and Reproducing	
			Hilbert Spaces	264
		9.4.1 9.4.2	Reproducing Kernel Hilbert Spaces	265
		9.4.2 9.4.3	Sobolev Normed Spaces	266
		9.4.3 9.4.4	Relation to Green's Functions Gradient and Laplacian Induced Green's Kernels	267 267
	9.5		an Processes Induced via Linear Differential Operators	207
	9.6		an Fields in the Unit Cube	274
	7.0	9.6.1	Maximum Likelihood Estimation of the Fields: Generalized ARMA	2/1
		2.0.1	Modelling	278
		9.6.2	Small Deformation Vector Fields Models in the Plane and Cube	280
	9.7		e Lattices and Reachability of Cyclo-Stationary Spectra	283
	9.8		ary Processes on the Sphere	285
	2.0	9.8.1	Laplacian Operator Induced Gaussian Fields on the Sphere	289
	9.9		an Random Fields on an Arbitrary Smooth Surface	293
		9.9.1	Laplace-Beltrami Operator with Neumann Boundary Conditions	293
		9.9.2	Smoothing an Arbitrary Function on Manifolds by Orthonormal Bases	
			of the Laplace-Beltrami Operator	297
	9.10	Sample	Path Properties and Continuity	299
	9.11	Gaussi	an Random Fields as Prior Distributions in Point	
		Process	Image Reconstruction	303
		9.11.1	The Need for Regularization in Image Reconstruction	304
		9.11.2	Smoothness and Gaussian Priors	304
		9.11.3	Good's Roughness as a Gaussian Prior	305
		9.11.4	Exponential Spline Smoothing via Good's Roughness	306
	9.12		ompact Operators and Orthogonal Representations	309
		9.12.1	1 2	311
		9.12.2	Orthogonal Scale Representation	312
10		-	es for the Matrix Groups	316
	10.1		nnian Manifolds as Metric Spaces	316
		10.1.1	Metric Spaces and Smooth Manifolds	316
	10.2	10.1.2	Riemannian Manifold, Geodesic Metric, and Minimum Energy	317
			Spaces as Metric Spaces	319
	10.5		nate Frames on the Matrix Groups and	220
		uie EXI	ponential Map	320

		CONTENTS	ix
		10.2.1 Laft and Bight Group Action	320
		10.3.1 Left and Right Group Action	321
		10.3.2 The Coordinate Frames	321
		10.3.3 Local Optimization via Directional Derivatives and the	323
	10 /	Exponential Map Matrix Grange Structure for the Lincor Matrix Graune	323
	10.4	Metric Space Structure for the Linear Matrix Groups	324
	10 E	10.4.1 Geodesics in the Matrix Groups Conservation of Momentum and Geodesic Evolution of the	324
	10.5		326
	10.4	Matrix Groups via the Tangent at the Identity	320
		Metrics in the Matrix Groups Viewing the Matrix Groups in Extrinsic Euclidean Coordinates	329
	10.7	10.7.1 The Frobenius Metric	329
		10.7.2 Comparing intrinsic and extrinsic metrics in SO (2,3)	330
		10.7.2 Comparing multisic and extinisic metrics in $50(2,3)$	550
11		ics Spaces for the Infinite Dimensional Diffeomorphisms	332
	11.1	Lagrangian and Eulerian Generation of Diffeomorphisms	332
		11.1.1 On Conditions for Generating Flows of Diffeomorphisms	333
		11.1.2 Modeling via Differential Operators and the Reproducing	
		Kernel Hilbert Space	335
		The Metric on the Space of Diffeomorphisms	336
		Momentum Conservation for Geodesics	338
	11.4	Conservation of Momentum for Diffeomorphism Splines	
		Specified on Sparse Landmark Points	340
		11.4.1 An ODE for Diffeomorphic Landmark Mapping	343
12	Metr	ics on Photometric and Geometric Deformable Templates	346
		Metrics on Dense Deformable Templates: Geometric Groups	
		Acting on Images	346
		12.1.1 Group Actions on the Images	346
		12.1.2 Invariant Metric Distances	347
	12.2	The Diffeomorphism Metric for the Image Orbit	349
	12.3	Normal Momentum Motion for Geodesic Connection Via	
		Inexact Matching	350
	12.4	Normal Momentum Motion for Temporal Sequences	354
	12.5	Metric Distances Between Orbits Defined Through	
		Invariance of the Metric	356
	12.6	Finite Dimensional Landmarked Shape Spaces	357
		12.6.1 The Euclidean Metric	357
		12.6.2 Kendall's Similitude Invariant Distance	359
	12.7	The Diffeomorphism Metric and Diffeomorphism Splines on Landmark Shapes	361
		12.7.1 Small Deformation Splines	361
	12.8	The Deformable Template: Orbits of Photometric and	245
		Geometric Variation	365
		12.8.1 Metric Spaces for Photometric Variability	365
	10.0	12.8.2 The Metrics Induced via Photometric and Geometric Flow	366
		The Euler Equations for Photometric and Geometric Variation	369
) Metrics between Orbits of the Special Euclidean Group	373
	12.11	The Matrix Groups (Euclidean and Affine Motions)	374 376
		12.11.1 Computing the Affine Motions	370
13	Estin	nation Bounds for Automated Object Recognition	378
	13.1	The Communications Model for Image Transmission	378
		13.1.1 The Source Model: Objects Under Matrix Group Actions	379
		13.1.2 The Sensing Models: Projective Transformations in Noise	379
		13.1.3 The Likelihood and Posterior	379

x	CONTENTS

.....

	13.2	Conditional Mean Minimum Risk Estimation	381
		13.2.1 Metrics (Risk) on the Matrix Groups	381
		13.2.2 Conditional Mean Minimum Risk Estimators	382
		13.2.3 Computation of the HSE for SE (2,3)	384
		13.2.4 Discrete integration on SO (3)	385
	13.3	MMSE Estimators for Projective Imagery Models	385
		13.3.1 3D to 2D Projections in Gaussian Noise	385
		13.3.2 3D to 2D Synthetic Aperture Radar Imaging	389
		13.3.3 3D to 2D LADAR Imaging	392
		13.3.4 3D to 2D Poisson Projection Model	393
		13.3.5 3D to 1D Projections	395
	10.4	13.3.6 3D(2D) to 3D(2D) Medical Imaging Registration	397
		Parameter Estimation and Fisher Information	398
		Bayesian Fusion of Information	402
	13.6	Asymptotic Consistency of Inference and Symmetry Groups	405
		13.6.1 Consistency	405
	127	13.6.2 Symmetry Groups and Sensor Symmetry	406
	15.7	Hypothesis Testing and Asymptotic Error-Exponents	407
		13.7.1 Analytical Representations of the Error Probabilities and the	100
		Bayesian Information Criterion	408 412
		13.7.2 m-ary Multiple Hypotheses	412
14	Estin	nation on Metric Spaces with Photometric Variation	414
		Geometric Variation	414
		14.1.1 The Robust Deformable Templates	414
		14.1.2 The Metric Space of the Robust Deformable Template	415
	14.2		
		via Principle Components	416
		14.2.1 Signatures as a Gaussian Random Field Constructed from	
		Principle Components	417
		14.2.2 Algorithm for Empirical Construction of Bases	418
	14.3	Estimation of Parameters on the Conditionally Gaussian	
		Random Field Models	422
	14.4	Estimation of Pose by Integrating Out EigenSignatures	424
		14.4.1 Bayes Integration	427
		Multiple Modality Signature Registration	429
	14.6	Models for Clutter: The Transported Generator Model	431
		14.6.1 Characteristic Functions and Cumulants	432
	14.7	Robust Deformable Templates for Natural Clutter	438
		14.7.1 The Euclidean Metric	439
		14.7.2 Metric Space Norms for Clutter	439
		14.7.3 Computational Scheme	442
		14.7.4 Empirical Construction of the Metric from Rendered Images	444
	14.8	Target detection/identification in EO imagery	445
15	Infe	mation Rounds for Automated Object Personition	447
13		rmation Bounds for Automated Object Recognition Mutual Information for Sensor Systems	447
	10.1	15.1.1 Quantifying Multiple-Sensor Information Gain Via Mutual	
		Information	447
		15.1.2 Quantifying Information Loss with Model Uncertainty	449
		15.1.2 Quantifying information less with Model Oricertainty 15.1.3 Asymptotic Approximation of Information Measures	452
		10.1.0 They inprove Approximation of information measures	-102

	CONTE	NTS

	15.2	Rate-Distortion Theory	456
		15.2.1 The Rate-Distortion Problem	456
	15.3	The Blahut Algorithm	457
	15.4	The Remote Rate Distortion Problem	459
		15.4.1 Blahut Algorithm extended	460
	15.5	Output Symbol Distribution	465
16	Com	putational Anatomy: Shape, Growth and Atrophy Comparison via	
	Diffe	eomorphisms	468
	16.1	Computational Anatomy	468
		16.1.1 Diffeomorphic Study of Anatomical Submanifolds	469
	16.2	The Anatomical Source Model of CA	470
		16.2.1 Group Actions for the Anatomical Source Model	472
		16.2.2 The Data Channel Model	473
	16.3	Normal Momentum Motion for Large Deformation Metric	477.4
		Mapping (LDDMM) for Growth and Atrophy	474
		Christensen Non-Geodesic Mapping Algorithm	478
	16.5	Extrinsic Mapping of Surface and Volume Submanifolds	480
		16.5.1 Diffeomorphic Mapping of the Face	481
		16.5.2 Diffeomorphic Mapping of Brain Submanifolds	481
		16.5.3 Extrinsic Mapping of Subvolumes for Automated	481
		Segmentation 16.5.4 Metric Mapping of Cortical Atlases	483
	16.6	Heart Mapping and Diffusion Tensor Magnetic	400
	10.0	Resonance Imaging	484
	16.7	Vector Fields for Growth	488
	100	16.7.1 Growth from Landmarked Shape Spaces	488
17	Com	putational Anatomy: Hypothesis Testing on Disease	494
		Statistics Analysis for Shape Spaces	494
		Gaussian Random Fields	495
		17.2.1 Empirical Estimation of Random Variables	496
	17.3	Shape Representation of the Anatomical Orbit Under Large Deformation	
		Diffeomorphisms	496
		17.3.1 Principal Component Selection of the Basis from	
		Empirical Observations	497
	17.4	The Momentum of Landmarked Shape Spaces	498
		17.4.1 Geodesic evolution equations for landmarks	498
		17.4.2 Small Deformation PCA Versus Large Deformation PCA	499
		The Small Deformation Setting	502
		Small Deformation Gaussian Fields on Surface Submanifolds	502
	17.7	Disease Testing of Automorphic Pathology	503 503
		17.7.1 Hypothesis Testing on Disease in the Small Noise Limit 17.7.2 Statistical Testing	503 505
	17.8	8	510
		Distribution Free Testing Heteromorphic Tumors	510
4.0		- ,	
18		kov Processes and Random Sampling	514 514
	18.1	Markov Jump Processes	514
	10 0	18.1.1 Jump Processes Pandom Sampling and Stochastic Informace	516
	18.2	Random Sampling and Stochastic Inference 18.2.1 Stationary or Invariant Measures	517
		18.2.1 Stationary or Invariant Measures18.2.2 Generator for Markov Jump Processes	517
		18.2.3 Jump Process Simulation	520
		18.2.4 Metropolis–Hastings Algorithm	521
		menopono masmilo merinini	

5______xi

	18.3	Diffusi	on Processes for Simulation	523
		18.3.1	Generators of 1D Diffusions	525
		18.3.2	Diffusions and SDEs for Sampling	527
	18.4	Jump-I	Diffusion Inference on Countable Unions of Spaces	528
		18.4.1	The Basic Problem	529
19	Jump) Diffus	ion Inference in Complex Scenes	532
	19.1	Recogr	nition of Ground Vehicles	533
		19.1.1	CAD Models and the Parameter Space	533
		19.1.2	The FLIR Sensor Model	534
	19.2		Diffusion for Sampling the Target Recognition Posterior	536
			The Posterior distribution	536
			The Jump Diffusion Algorithms	536
			Jumps via Gibbs' Sampling	539
		19.2.4	Jumps via Metropolis–Hastings Acceptance/Rejection	541
	19.3		mental Results for FLIR and LADAR	543
		19.3.1	Detection and Removal of Objects	543
			Identification	543
		19.3.3	Pose and Identification	544
			Identification and recognition via High Resolution Radar (HRR)	546
		19.3.5	The Dynamics of Pose Estimation via the Jump–Diffusion Process	546
			LADAR Recognition	548
	19.4		ful Prior Dynamics for Airplane Tracking	549
		19.4.1	The Euler-Equations Inducing the Prior on Airplane Dynamics	550
		19.4.2	Detection of Airframes	552
		19.4.3	Pruning via the Prior distribution	552
	19.5	Deform	nable Organelles: Mitochondria and Membranes	553
		19.5.1	The Parameter Space for Contour Models	553
		19.5.2	Stationary Gaussian Contour Model	554
		19.5.3	The Electron Micrograph Data Model: Conditional Gaussian Random	
			Fields	555
	19.6	Jump–	Diffusion for Mitochondria	556
			The jump parameters	557
			Computing gradients for the drifts	557
		19.6.3	Jump Diffusion for Mitochondria Detection and Deformation	558
		19.6.4	Pseudolikelihood for Deformation	560
	Refer	ences		563
	Inde	κ.		581