CHAPMAN & HALL/CRC APPLIED MATHEMATICS AND NONLINEAR SCIENCE SERIES

Introduction to Quantum Control and Dynamics

Domenico D'Alessandro

Iowa State University Ames, U.S.A.

Chapman & Hall/CRC is an imprint of the Taylor & Francis Group, an informa business

Contents

1	Qua	ntum	Mechanics	1
	1.1	States	and Operators	1
		1.1.1	State of a quantum system	1
		1.1.2	Linear operators	5
		1.1.3	State of composite systems and tensor product spaces	8
		1.1.4	State of an ensemble; Density operator	11
		1.1.5	Vector and matrix representation of states and opera-	
			tors	13
	1.2	Observ	vables and Measurement	15
		1.2.1	Observables	15
		1.2.2	The measurement postulate	20
		1.2.3	Measurements on ensembles	24
	1.3	Dynar	nics of Quantum Systems	25
		1.3.1	Schrödinger picture	26
		1.3.2	Heisenberg and interaction picture	29
	1.4	Notes	· · · · · · · · · · · · · · · · · · ·	30
		1.4.1	Interpretation of quantum dynamics as information pro-	
			cessing	30
		1.4.2	Direct sum versus tensor product for composite systems	31
	1.5	Exerci		32
^	٦٢.	1.11		0 F
2	2.1		of Quantum Control Systems; Examples cum Theory of Interaction of Particles and Field	35 35
	2.1	Quant 2.1.1	0	36 36
			Classical electrodynamics	
		2.1.2	Canonical quantization	46
		2.1.3	An example of canonical quantization: The quantum	50
		014	harmonic oscillator	
	0.0	2.1.4	Quantum mechanical Hamiltonian	53
	2.2		eximations and Modeling; Molecular Systems	56
		2.2.1	Approximations for molecular and atomic systems	56
	0.0	2.2.2	Controlled Schrödinger wave equation	59
	2.3	-	Dynamics and Control	62
		2.3.1	Introduction of the spin degree of freedom in the dy-	20
		0.0.0	namics of matter and fields	63
	0 4	2.3.2	Spin networks as control systems	66
	2.4	Mathematical Structure of Quantum Control Systems 69		
	2.5	Notes	and References	72

٠

	2.6	Exerci	ses	73
3	Cor	trollat	bility	75
	3.1	Lie Al	gebras and Lie Groups	76
		3.1.1	Basic definitions for Lie algebras	76
		3.1.2	Lie groups	79
	3.2	Contro	ollability Test: The Dynamical Lie Algebra	81
		3.2.1	Procedure to generate a basis of the dynamical Lie al-	
			gebra	82
		3.2.2	Uniform finite generation of compact Lie groups and	
			universal quantum gates	83
	3.3	Notior	ns of Controllability for the State	84
	3.4		State Controllability	85
		3.4.1	Lie transformation groups	86
		3.4.2	Coset spaces and homogeneous spaces	87
		3.4.3	The special unitary group and its action on the unit	
		01210	sphere	88
		3.4.4	The symplectic group and its action on the unit sphere	89
		3.4.5	Test for pure state controllability	93
	3.5		alent State Controllability	94
	3.6		ity of Orbits	95
	0.0	3.6.1	Density matrix controllability	97
	3.7		and References	98
	0.1	3.7.1	Alternate tests of controllability	98
		3.7.2	Pure state controllability and existence of constants of	00
		0.1.2	motion	100
		3.7.3	Bibliographical notes	102
		3.7.4	Some open problems	102
	3.8	Exerci	• •	102
	5.0	DAGICI		100
4			lity and State Determination	107
	4.1	•	sum State Tomography	107
		4.1.1	Example: Quantum tomography of a spin- $\frac{1}{2}$ particle .	107
		4.1.2	General quantum tomography	109
		4.1.3	Example: Quantum tomography of a spin- $\frac{1}{2}$ particle	
			(ctd.)	111
	4.2		vability	113
		4.2.1	Equivalence classes of indistinguishable states; Parti-	
			tion of the state space	114
	4.3	Obser	vability and Methods for State Reconstruction	118
		4.3.1	Observability conditions and tomographic methods	118
		4.3.2	System theoretic methods for quantum state reconstruc-	
			tion	119
	4.4	Notes	and References	121
	4.5	Exerci	ises	121

٠

vi

,

5	Lie	Group	Decompositions and Control	123		
	5.1	Decom	positions of $SU(2)$ and Control of Two Level Systems	125		
		5.1.1	The Lie groups $SU(2)$ and $SO(3)$	125		
		5.1.2	Euler decomposition of $SU(2)$ and $SO(3)$	126		
		5.1.3	Determination of the angles in the Euler decomposition			
			of $SU(2)$	127		
		5.1.4	Application to the control of two level quantum systems	128		
	5.2	Decom	position in Planar Rotations	130		
	5.3		Decompositions	131		
		5.3.1	Cartan decomposition of semisimple Lie algebras	132		
		5.3.2	The decomposition theorem for Lie groups	132		
		5.3.3	Refinement of the decomposition; Cartan subalgebras	133		
		5.3.4	Cartan decompositions of $su(n)$	135		
		5.3.5	Cartan involutions of $su(n)$ and quantum symmetries	137		
		5.3.6	Computation of the factors in the Cartan decomposi-			
			tions of $SU(n)$	139		
	5.4		ecomposition	145		
		5.4.1	Ideals and normal subgroups	145		
		5.4.2	Solvable Lie algebras	146		
		5.4.3	Levi decomposition	147		
	5.5	-	bles of Application of Decompositions to Control	147		
		5.5.1	Control of two coupled spin- $\frac{1}{2}$ particles with Ising inter-			
			action	148		
		5.5.2	Control of two coupled spin- $\frac{1}{2}$ particles with Heisenberg			
			interaction	150		
	5.6		and References	$\frac{153}{154}$		
	5.7	' Exercises				
6	Opt	imal C	ontrol of Quantum Systems	157		
	6.1	Formul	lation of the Optimal Control Problem	158		
		6.1.1	Optimal control problems of Mayer, Lagrange and Bolza	158		
		6.1.2	Optimal control problems for quantum systems	160		
	6.2	The Ne	ecessary Conditions of Optimality	162		
		6.2.1	General necessary conditions of optimality	162		
		6.2.2	The necessary optimality conditions for quantum con-			
			trol problems	166		
	6.3	Examp	ble: Optimal Control of a Two Level Quantum System	166		
	6.4		Optimal Control of Quantum Systems	169		
		6.4.1	The time optimal control problem; Bounded control $\ .$	171		
		6.4.2	Minimum time control with unbounded control; Rie-			
			mannian symmetric spaces	175		
	6.5		ical Methods for Optimal Control of Quantum Systems	182		
		6.5.1	Methods using discretization	183		
		6.5.2	Iterative methods	183		

vii

		6.5.3 Numerical methods for two points boundary value prob-	
		lems	186
	6.6	Notes and References	187
	6.7	Exercises	188
7	Mo	•	191
	7.1	Selective Population Transfer via Frequency Tuning	191
	7.2	Time Dependent Perturbation Theory	196
	7.3	Adiabatic Control	198
	7.4	STIRAP	201
	7.5	Lyapunov Control of Quantum Systems	205
		7.5.1 Quantum control problems in terms of a Lyapunov func-	0.05
		tion	205
		7.5.2 Determination of the control function	208
		7.5.3 Study of the asymptotic behavior of the state ρ	208
	7.6	Notes and References	214
	7.7	Exercises	215
8		alysis of Quantum Evolutions; Entanglement, Entangle-	
		5	217
	8.1	Entanglement of Quantum Systems	218
		8.1.1 Basic definitions and notions	218
		8.1.2 Tests of entanglement	223
		8.1.3 Measures of entanglement and concurrence	231
	8.2	Dynamics of Entanglement	238
		8.2.1 The two qubits example	240
		8.2.2 The odd-even decomposition and concurrence dynamics	243
		8.2.3 Recursive decomposition of dynamics in entangling and	
		$local parts \ldots \ldots$	248
	8.3	Local Equivalence of States	251
		8.3.1 General considerations on dimensions	252
		8.3.2 Invariants and polynomial invariants	255
		8.3.3 Some solved cases	257
	8.4	Notes and References	257
	8.5	Exercises	259
9	App	plications of Quantum Control and Dynamics	261
	9.1	Nuclear Magnetic Resonance Experiments	261
		9.1.1 Basics of NMR	261
		9.1.2 2-Dimensional NMR	266
		9.1.3 Control problems in NMR	268
	9.2	Molecular Systems Control	269
		9.2.1 Pulse shaping	269
		9.2.2 Objectives and techniques of molecular control	270

	 9.3 Atomic Systems Control; Implementations of Quantum Information Processing with Ion Traps			272
		0.0.1	tion processor	273
		9.3.2	Classical Hamiltonian	274
		9.3.3 9.3.4	Quantum mechanical Hamiltonian Practical implementation of different interaction Hamil-	275
			tonians	277
		9.3.5	The control problem: Switching between Hamiltonians	282
	9.4		and References	282
	9.5	Exerci	ses	283
A	Positive and Completely Positive Maps, Quantum Opera-			-
	tions and Generalized Measurement Theory			287
	A.1		ve and Completely Positive Maps	287
	A.2		um Operations and Operator Sum Representation	288
	A.3	Genera	alized Measurement Theory	289
В	Lag	rangia	n and Hamiltonian Formalism in Classical Electro	-
				29 1
	•			291
	B.2 Extension of Lagrangian Mechanics to Systems with Infinite			
	0			296
	B.3		ngian and Hamiltonian Mechanics for a System of Inter-	
		acting	Particles and Field	299
С	C Cartan Semisimplicity Criterion and Calculation of the Levi			
				305
	C.1		djoint Representation	305
	C.2		n Semisimplicity Criterion	306
	C.3		ent Lie Algebras	306
	C.4		ation of the Levi Subalgebra in the Levi Decomposition	307
•	C.5	Algori	thm for the Levi Decomposition	307
D	Pro	of of t	he Controllability Test of Theorem 3.2.1	309
Е	E The Baker-Campbell-Hausdorff Formula and Some Exponen- tial Formulas 315			
F	Pro	of of T	heorem 6.2.1	317
Re	References			
Ŧ	Index			
In	Index			

•