G. W. Stewart

University of Maryland College Park, Maryland

AFTERNOTES goes to GRADUATE SCHOOL

Lectures on Advanced Numerical Analysis

A series of lectures on advanced numerical analysis presented at the University of Maryland at College Park and recorded after the fact.

Society for Industrial and Applied Mathematics

Philadelphia

Contents

:

Preface	xi
Approximation	1
Lecture 1	3
General observations \ldots \ldots \ldots \ldots \ldots \ldots \ldots	3
Decline and fall	3
The linear sine \ldots	6
Approximation in normed linear spaces	7
Significant differences	9
Lecture 2	11
The space $C[0,1]$	11
Existence of best approximations	12
Uniqueness of best approximations $\ldots \ldots \ldots \ldots \ldots \ldots$	12
Convergence in $C[0,1]$	12
The Weierstrass approximation theorem	13
Bernstein polynomials	14
Comments	16
Lecture 3	17
Chebyshev approximation	17
Uniqueness	20
Convergence of Chebyshev approximations	21
Rates of convergence: Jackson's theorem	21
Lecture 4	23
A theorem of de la Vallée Poussin	23
A general approximation strategy	24
Chebyshev polynomials	25
Economization of power series	26
Farewell to $C[a, b]$	28
Lecture 5	31
Discrete, continuous, and weighted least squares	31
Inner-product spaces	32
Quasi-matrices	33
Positive definite matrices	34
The Cauchy and triangle inequalities	35
Orthogonality	36
The QR factorization	37
Lecture 6	39
Existence and uniqueness of the QR factorization	39
The Gram-Schmidt algorithm	40
Projections	41
Best approximation on inner-product spaces	43

Multiplicity and defective matrices			109
Functions of matrices			110
Similarity transformations and diagonalization			111
The Schur decomposition			112
Lecture 13			115
Real Schur form			115
Block diagonalization			116
Diagonalization			118
Jordan canonical form			119
Hermitian matrices			120
Perturbation of a simple eigenvalue			120
Lecture 14			125
A backward perturbation result			125
The Rayleigh quotient			126
Powers of matrices			127
The power method			131
Lecture 15			135
The inverse power method			135
Derivation of the QR algorithm			137
Local convergence analysis			139
Practical considerations			141
Hessenberg matrices			142
Lecture 16			145
Reduction to Hessenberg form			145
The Hessenberg QR algorithm			147
Return to Upper Hessenberg			149
Lecture $17 \ldots \ldots$			151
The implicit double shift			151
Some implementation details			153
The singular value decomposition			155
Lecture 18			157
Rank and Schmidt's theorem			157
Computational considerations			158
Reduction to bidiagonal form			159
Plane rotations			161
The implicit \mathbf{QR} algorithm for singular values			162
Karles Comments Matheda			105
Locture 10			167
Introduction	•	•	167
	•	•	167
Invariant subspaces	•	•	170
Krylov subspaces	·	·	171
Arnoldi decompositions	•	•	1/1

Bibliography

																													237
Bibliography	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	·	•	·	•	٠	•	•	•	·	·	233
Introduction .		•								•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	233

Index

~