G. W. Stewart

University of Maryland College Park, Maryland

AFTERNOTES

goes to

 Graduate SCHOOL
Lectures on Advanced Numerical Analysis

A series of lectures on advanced numerical analysis presented at the University of Maryland at College Park and recorded after the fact.

Contents

Preface xi
Approximation 1
Lecture 1 3
General observations 3
Decline and fall 3
The linear sine 6
Approximation in normed linear spaces 7
Significant differences 9
Lecture 2 11
The space $C[0,1]$ 11
Existence of best approximations 12
Uniqueness of best approximations 12
Convergence in $C[0,1]$ 12
The Weierstrass approximation theorem 13
Bernstein polynomials 14
Comments 16
Lecture 3 17
Chebyshev approximation 17
Uniqueness 20
Convergence of Chebyshev approximations 21
Rates of convergence: Jackson's theorem 21
Lecture 4 23
A theorem of de la Vallée Poussin 23
A general approximation strategy 24
Chebyshev polynomials 25
Economization of power series 26
Farewell to $C[a, b]$ 28
Lecture 5 31
Discrete, continuous, and weighted least squares 31
Inner-product spaces 32
Quasi-matrices 33
Positive definite matrices 34
The Cauchy and triangle inequalities 35
Orthogonality 36
The QR factorization 37
Lecture 6 39
Existence and uniqueness of the QR factorization 39
The Gram-Schmidt algorithm 40
Projections 41
Best approximation on inner-product spaces 43
Lecture 7 47
Expansions in orthogonal functions 47
Orthogonal polynomials 48
Discrete least squares and the QR decomposition 52
Lecture 8 57
Householder transformations 57
Orthogonal triangularization 59
Implementation 62
Comments on the algorithm 63
Solving least squares problems 64
Lecture 9 67
Operation counts 67
The Frobenius and spectral norms 68
Stability of orthogonal triangularization 69
Error analysis of the normal equations 70
Perturbation of inverses and linear systems 71
Perturbation of pseudoinverses and least squares solutions 73
Summary 77
Linear and Cubic Splines 79
Lecture 10 81
Piecewise linear interpolation 81
The error in $L(f)$ 83
Approximation in the ∞-norm 84
Hat functions 84
Integration 85
Least squares approximation 86
Implementation issues 88
Lecture 11 93
Cubic splines 93
Derivation of the cubic spline 94
End conditions 95
Convergence 97
Locality 97
Eigensystems 103
Lecture 12 105
A system of differential equations 105
Complex vectors and matrices 106
Eigenvalues and eigenvectors 107
Existence and uniqueness 108
Left eigenvectors 108
Real matrices 108
Multiplicity and defective matrices 109
Functions of matrices 110
Similarity transformations and diagonalization 111
The Schur decomposition 112
Lecture 13 115
Real Schur form 115
Block diagonalization 116
Diagonalization 118
Jordan canonical form 119
Hermitian matrices 120
Perturbation of a simple eigenvalue 120
Lecture 14 125
A backward perturbation result 125
The Rayleigh quotient 126
Powers of matrices 127
The power method 131
Lecture 15 135
The inverse power method 135
Derivation of the QR algorithm 137
Local convergence analysis 139
Practical considerations 141
Hessenberg matrices 142
Lecture 16 145
Reduction to Hessenberg form 145
The Hessenberg QR algorithm 147
Return to Upper Hessenberg 149
Lecture 17 151
The implicit double shift 151
Some implementation details 153
The singular value decomposition 155
Lecture 18 157
Rank and Schmidt's theorem 157
Computational considerations 158
Reduction to bidiagonal form 159
Plane rotations 161
The implicit QR algorithm for singular values 162
Krylov Sequence Methods 165
Lecture 19 167
Introduction 167
Invariant subspaces 167
Krylov subspaces 170
Arnoldi decompositions 171
Implicit restarting 173
Deflation 174
Lecture 20 177
The Lanczos algorithm 177
Relation to orthogonal polynomials 179
Golub-Kahan-Lanczos bidiagonalization 180
Lecture 21 183
Linear systems, errors, and residuals 183
Descending to a solution 183
Conjugate directions 185
The method of conjugate gradients 187
Termination 190
Lecture 22 191
Operation counts and storage requirements 191
Conjugate gradients as an iterative method 191
Convergence in the A -norm 191
Monotone convergence in the 2 -norm 194
Lecture 23 197
Preconditioned conjugate gradients 197
Preconditioners 199
Incomplete LU preconditioners 201
Lecture 24 205
Diagonally dominant matrices 205
Return to incomplete factorization 210
Iterations, Linear and Nonlinear 213
Lecture 25 215
Some classical iterations 215
Splittings and iterative methods 217
Convergence 218
Irreducibility 218
Splittings of irreducibly diagonally dominant matrices 219
M-matrices and positive definite matrices 221
Lecture 26 223
Linear and nonlinear 223
Continuity and derivatives 224
The fixed-point iteration 225
Linear and nonlinear iterations compared 227
Rates of convergence 227
Newton's method 228
The contractive mapping theorem 229
Bibliography 233
Introduction 233
Bibliography 233
Index 237

