Particle Astrophysics

Second Edition

D. H. PERKINS

Particle and Astrophysics Department Oxford University

Contents

Part 1 Particles and Interactions

1	Quarl	and leptons and their interactions	. 3
	1.1	Preamble	3
	1.2	Quarks and leptons	4
	1.3	Fermions and bosons: the spin-statistics theorem;	
		supersymmetry	9
	1.4	Antiparticles	9
	1.5	The fundamental interactions: boson exchange	11
. c	1.6	The boson couplings to fermions	14
	1.7	The quark–gluon plasma	21
	1.8	The interaction cross section	21
	1.9	Examples of elementary particle cross sections	24
	1.10	Decays and resonances	30
	1,11	Examples of resonances	32
	1.12	New particles	34
	1.13	Summary	35
	Proble	ems	36
2		ivistic transformations and the equivalence	39
	princ	-	
	2.1	Coordinate transformations in special relativity	39
	2.2	Invariant intervals and four-vectors	41
	2.3	The equivalence principle: clocks in gravitational	10
	2.4	fields	42
	2.4	General relativity	47
	2.5	The Schwarzschild line element, Schwarzschild radius,	40
	24	and black holes	49
	2.6	The gravitational deflection of light by a point	51
	0.7	mass	51
	2.7	Shapiro time delay	52
	2.8	Orbital precession	53
	2.9	The Robertson–Walker line element	54
	2.10		55
	2.11	Relativistic kinematics: four-momentum; the Doppler	57
	0.10	effect	56
	2.12	Fixed-target and colliding-beam accelerators	57 59
	Problems		

3		rvation rules, symmetries, and the Standard Model of le physics	60
	3.1	Transformations and the Euler–Lagrange	
	0.12	equation	60
	3.2	Rotations	62
	3.3	The parity operation	62
	3.4	Parity conservation and intrinsic parity	63
	3.5	Parity violation in weak interactions	65
	3.6	Helicity and helicity conservation	67
	3.7	Charge conjugation invariance	69
	3.8	Gauge transformations and gauge invariance	69
	3.9	Superstrings	73
	3.10	Gauge invariance in the electroweak theory	74
	3.11	The Higgs mechanism of spontaneous symmetry	
		breaking	75
	3.12	Running couplings	77
	3.13	Vacuum structure in gauge theories	- 83
	3.14		83
	3.15	CP violation in neutral kaon decay	84
	3.16	CP violation in the Standard Model: the CKM	
		matrix	87
	3.17	Summary	89
	Proble	ems	. 90
	-		
4		sions of the Standard Model	92
	4.1	Neutrinoless double beta decay	92
	4.2	Neutrino masses and flavour oscillations	94
	4.3	Grand unified theories: proton decay	97
	4.4	Grand unification and the neutrino see-saw	
		mechanism	100
	4.5	Hierarchies and supersymmetry	102
	4.6	Summary	103
	Proble	ems	104
		· · · · · · · · · · · · · · · · · · ·	
Pa	rt 2	The Early Universe	
5	The e	expanding universe	107
	5.1	The Hubble expansion	107
	5.2	Olbers' paradox	113
	5.3	The Friedmann equation	114
	5.4	The sources of energy density	117
	5.5	Observed energy densities	120
	5.6	The age and size of the universe	123
	5.7	The deceleration parameter	126
	5.8	Cosmic microwave background radiation (CMB)	127
	5.9	Anisotropies in the microwave radiation	130
	5.10	Particles and radiations in the early universe	131
	5.11	Photon and neutrino densities	134
			•

	5.13	The eras of matter-radiation equality	138
	5.14	Summary	139
	Proble	ms	140
		•	
6	Nuclea	osynthesis and baryogenesis	142
U	6.1	Primordial nucleosynthesis	142
	6.2	Baryogenesis and matter-antimatter asymmetry /	146
	6.3	The baryon-photon ratio in the Big Bang	148
	6.4	The Sakharov criteria	150
	6.5	The baryon-antibaryon asymmetry: possible	
	0.0	scenarios	151
	6.6	Summary	154
	Proble	2	155
		·	2
	- 1		
7		matter and dark energy components	156
	7.1	Preamble	156
	7.2	Dark matter in galaxies and clusters	157
	7.3	Gravitational lensing Evidence for dark matter from gravitational	159
	7.4		160
	7.5	lensing Microlensing and MACHOs	160
•			165
	7.6 7.7	The lensing probability: optical depth Baryonic dark matter	165
	7.8	Neutrinos	167
	7.8	Axions	168
	7.10	Axion-like particles	169
	7.11	Weakly interacting massive particles	170
,	7.12	Expected WIMP cross-sections and event rates	173
	7.12	Experimental WIMP searches	174
	7.14	Dark energy: high redshift supernovae and Hubble plot at	171
		large z	176
	7.15	Vacuum energy: the Casimir effect	182
	7.16	Problems with the cosmological constant and dark	
		energy	184
	7.17	Summary	186
	Proble		187
		·	
o	D 1		100
8	8.1	opment of structure in the early universe	188
	8.2	Preamble Coloria and interpolactic magnetic folds	188
		Galactic and intergalactic magnetic fields	189
	8.3 8.4	Horizon and flatness problems Inflation	190 192
	8.4 8.5		192
	8.5 8.6	Chaotic inflation	
	8.0 8.7	Quantum fluctuations and inflation	198 200
	8.7 8.8	The spectrum of primordial fluctuations Gravitational collapse and the Jeans mass	200
	o.o 8.9		202
	8.9 8.10	The growth of structure in an expanding universe Evolution of fluctuations during the radiation era	205
	0.10	Evolution of fluctuations during the radiation era	200

8.11	Cosmological limits on neutrino mass from fluctuation	
	spectrum	210
8.12	Growth of fluctuations in the matter-	
	dominated era	212
8.13	Temperature fluctuations and anisotropies in the	
	СМВ	213
8.14	The Angular spectrum of anisotropies: 'acoustic peaks' in	
	the distribution	216
8.15	Experimental observation and interpretation of CMB	
	anisotropies	222
8.16	Polarization of the cosmic microwave radiation	223
8.17	Summary	224
Problems		226

Part 3 Particles and Radiation in the Cosmos

9	Cosm	ic particles	229
	9.1	Preamble	229
	9.2	The composition and spectrum of cosmic rays	230
	9.3	Geomagnetic and solar effects	233
	9.4	Acceleration of cosmic rays	237
	9.5	Secondary cosmic radiation: pions and muons	239
	9.6	Passage of charged particles and radiation through	
		matter	240
	9.7	Development of an electromagnetic cascade	243
	9.8	Extensive air showers: nucleon- and photon-induced	
		showers	245
	9.9	Detection of extensive air showers	245
	9.10	Point sources of γ -rays	247
	9.11	γ-Ray bursts	249
	9.12	Ultra-high-energy cosmic ray showers: the GZK	
		cut-off .	251
	9.13	Point sources of ultra high energy cosmic rays	253
	9.14	Radio galaxies and quasars	253
	9.15	Atmospheric neutrinos: neutrino oscillations	257
	9.16	Solar neutrinos	260
	9.17	Neutrino oscillations in matter	263
	9.18	Point sources of high-energy neutrinos	263
	9.19	Gravitational radiation	264
	9.20	The binary pulsar	267
	9.21	Detection of gravitational waves	269
	9.22	Summary	270
	Problems		271
	`		
10	Parti	cle physics in stars and galaxies	273
	10.1	Preamble	273
	10.2	Stellar evolution—the early stages	273

10.3	Hydrogen burning: the p-p cycle in the Sun	276

	10.4	Helium burning and the production of carbon and	
		oxygen	278
	10.5	Production of heavy elements	280
	10.6	Electron degeneracy pressure and stellar stability	281
	10.7	White dwarf stars	284
	10.8	Stellar collapse: type II supernovae	285
	10.9	Neutrinos from SN 1987A	288
	10.10	Neutron stars and pulsars	291
	10.11	Black holes	294
	10.12	Hawking radiation from black holes	295
	10.13	Summary	297
	Proble	ems	298
A	Table	of physical constants	299
В	Yukay	wa theory and the boson propagator	301
Ç	Pertu	rbative growth of structure in the early	
	unive		303
	C .1	Growth in the matter-dominated era	306
D	The N	ISW mechanism in solar neutrino interactions	308
An	Answers to problems		312
References Bibliography			329
			333
In	dex		335