George C. Hsiao Wolfgang L. Wendland

Boundary Integral Equations

Table of Contents

Pr	eface	?			
1.	Introduction				
	1.1	The Green Representation Formula			
	1.2	Boundary Potentials and Calderón's Projector			
	1.3	Boundary Integral Equations			
		1.3.1 The Dirichlet Problem			
		1.3.2 The Neumann Problem			
	1.4	Exterior Problems			
		1.4.1 The Exterior Dirichlet Problem			
		1.4.2 The Exterior Neumann Problem			
	1.5	Remarks			
2.	Boı	ındary Integral Equations 2!			
	2.1	The Helmholtz Equation			
		2.1.1 Low Frequency Behaviour			
	2.2	The Lamé System			
		2.2.1 The Interior Displacement Problem			
		2.2.2 The Interior Traction Problem			
		2.2.3 Some Exterior Fundamental Problems			
		2.2.4 The Incompressible Material 6			
	2.3	The Stokes Equations			
		2.3.1 Hydrodynamic Potentials 6			
		2.3.2 The Stokes Boundary Value Problems			
		2.3.3 The Incompressible Material — Revisited			
	2.4	The Biharmonic Equation 79			
		2.4.1 Calderón's Projector 83			
		2.4.2 Boundary Value Problems and Boundary			
		Integral Equations			
	2.5	Remarks			
3.	Rer	presentation Formulae 95			
J .	3.1	Classical Function Spaces and Distributions 99			
	3.2	Hadamard's Finite Part Integrals			

	3.3	Local	Coordinates	. 108		
	3.4	Short	Excursion to Elementary Differential Geometry	. 111		
		3.4.1				
			in Divergence Form	. 119		
	3.5		butional Derivatives and Abstract Green's			
			d Formula			
	3.6	The C	Green Representation Formula	. 130		
	3.7	Green	's Representation Formulae in Local Coordinates	. 135		
	3.8	Multil	layer Potentials	. 139		
	3.9	Direct	Boundary Integral Equations			
		3.9.1	= 3 422 443 1			
		3.9.2				
	3.10	Rema	rks	. 157		
4.	Sob	olev S	paces	. 159		
	4.1	The S	paces $H^s(\Omega)$. 159		
	4.2	The T	Trace Spaces $H^s(\Gamma)$. 169		
		4.2.1	Trace Spaces for Periodic Functions on a Smooth			
			Curve in \mathbb{R}^2			
		4.2.2	Trace Spaces on Curved Polygons in \mathbb{R}^2			
	4.3		Trace Spaces on an Open Surface			
	4.4	Weigh	ted Sobolev Spaces	. 191		
5.	Variational Formulations					
	5.1	Partia	l Differential Equations of Second Order			
		5.1.1	Interior Problems	. 199		
		5.1.2	Exterior Problems	. 204		
		5.1.3	Transmission Problems	. 215		
	5.2	Abstra	act Existence Theorems for Variational Problems	. 218		
		5.2.1	The Lax-Milgram Theorem	. 219		
	5.3	The F	redholm-Nikolski Theorems	. 226		
		5.3.1	Fredholm's Alternative			
		5.3.2	The Riesz-Schauder and the Nikolski Theorems	. 235		
		5.3.3	Fredholm's Alternative for Sesquilinear Forms	. 240		
		5.3.4	Fredholm Operators	. 241		
	5.4	Gårding's Inequality for Boundary Value Problems 2				
		5.4.1	Gårding's Inequality for Second Order Strongly			
			Elliptic Equations in Ω	. 243		
		5.4.2	The Stokes System			
		5.4.3	Gårding's Inequality for Exterior Second Order			
			Problems	. 254		
		5.4.4	Gårding's Inequality for Second Order Transmission			
			Problems	. 259		
	5.5	Existe	ence of Solutions to Boundary Value Problems	. 259		
			Interior Boundary Value Problems			

		7.1.3 $7.1.4$	Parity Conditions	
			and Symbols	
	7.2	Coord 7.2.1	linate Changes and Pseudohomogeneous Kernels The Transformation of General Hadamard Finite Part	. 394
		7.2.2	Integral Operators under Change of Coordinates The Class of Invariant Hadamard Finite Part Integral	. 397
			Operators under Change of Coordinates	. 404
8.	Pse	udodi	fferential and Boundary Integral Operators	. 413
•	8.1		lodifferential Operators on Boundary Manifolds	
		8.1.1	Ellipticity on Boundary Manifolds	
		8.1.2		
	8.2	Boune	dary Operators Generated by Domain	
	0			. 421
	8.3	Surfa	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$. 423
	8.4	Pseuc	lodifferential Operators with Symbols of Rational Type	. 446
	8.5		ce Potentials on the Boundary Manifold Γ	
	8.6		ne Potentials	
	8.7		g Ellipticity and Fredholm Properties	
	8.8		g Ellipticity of Boundary Value Problems	
	0.0		Associated Boundary Integral Equations	. 485
		8.8.1		
		8.8.2	The Associated Boundary Integral Equations	. 100
			of the First Kind	. 488
		8.8.3	The Transmission Problem and Gårding's inequality .	
	8.9	Rema	rks	
9.	Inte	egral I	Equations on $\Gamma \subset {\rm I\!R}^3$ Recast	
•		_	odifferential Equations	493
	9.1		on Potential Operators for Elliptic Partial Differential	. 100
			tions and Systems	. 499
		9.1.1	Generalized Newton Potentials for the Helmholtz	
			Equation	. 502
		9.1.2	The Newton Potential for the Lamé System	
		9.1.3	The Newton Potential for the Stokes System	
	9.2		ce Potentials for Second Order Equations	
		9.2.1	Strongly Elliptic Differential Equations	
		9.2.2	Surface Potentials for the Helmholtz Equation	
		9.2.3	Surface Potentials for the Lamé System	
		9.2.4	Surface Potentials for the Stokes System	
	9.3		ance of Boundary Pseudodifferential Operators	
	0.0	9.3.1	The Hypersingular Boundary Integral Operators	. 027
		0.0.1	for the Helmholtz Equation	525

		9.3.2 The Hypersingular Operator for the Lamé System 531
		9.3.3 The Hypersingular Operator for the Stokes System 535
	9.4	Derivatives of Boundary Potentials
		9.4.1 Derivatives of the Solution to the Helmholtz Equation 541
		9.4.2 Computation of Stress and Strain on the Boundary
		for the Lamé System
	9.5	Remarks
10.	Bou	ndary Integral Equations on Curves in $\mathbb{R}^2 \dots 549$
		Fourier Series Representation of the Basic Operators 550
	10.2	The Fourier Series Representation of Periodic Operators
		$A \in \mathcal{L}^m_{c\ell}(\Gamma)$
	10.3	Ellipticity Conditions for Periodic Operators on Γ
		10.3.1 Scalar Equations
		10.3.2 Systems of Equations
		10.3.3 Multiply Connected Domains 572
	10.4	Fourier Series Representation of some Particular Operators 574
		10.4.1 The Helmholtz Equation
		10.4.2 The Lamé System
		10.4.3 The Stokes System
		10.4.4 The Biharmonic Equation
	10.5	Remarks
Α.	n:æ	erential Operators in Local Coordinates
л.		Minimal Differentiability
	W 101	i William Dinorchamby
Ref	eren	ces
Ind	ex .	