

Local strategies for robot formation problems

Dissertation

by

Barbara Kempkes

Faculty of Computer Science, Electrical Engineering and Mathematics Department of Computer Science and Heinz Nixdorf Institute University of Paderborn, Germany

March 2012

Contents

1	Intro	oduction	1
	1.1	Related work	4
	1.2	Bibliography Note	8
2	The	Robot Chain Problem	11
	2.1	Introduction	11
	2.2	Problem description and notation	13
	2.3	Strategies	17
		2.3.1 The MOVE-ON-BISECTOR strategy	17
		2.3.2 The Go-To-The-Middle strategy	19
	2.4	Quality Measures	20
3	The	Robot Chain Problem: traveled distance	21
	3.1	Validity of the MOVE-ON-BISECTOR strategy	22
	3.2	The $\mathcal{O}(l)$ upper bound	24
	3.3	The $\mathcal{O}((h+d)\log l)$ upper bound	27
4	The	Robot Chain Problem: both quality measures	33
	4.1	The δ -bounded GO-TO-THE-MIDDLE strategy	34
		4.1.1 The worst-case number of rounds	36
		4.1.2 Maximum distance traveled by a robot	46
	4.2	The continuous Go-To-The-MIDDLE strategy	52
5	The	e Gathering Problem	55
	5.1	Introduction	55
	5.2	Problem description and notation	56
	5.3	Quality Measures	59

¥

6	A fi	rst gathering algorithm	61		
	6.1	The algorithm MOVEINCH	61		
	6.2	Analysis of MOVEINCH	63		
	6.3	A local random activation model	71		
	6.4	Conclusion	72		
7	An	improved gathering algorithm	75		
	7.1	The algorithm GO-TO-THE-CENTER	75		
	7.2	The Lower Bound	77		
	7.3	The Upper Bound	78		
		7.3.1 Geometric Prerequisites	80		
		7.3.2 Gathering Algorithm Analysis	83		
8	Gathering regarding the traveled distance 8				
	8.1	The GATHERING-MOVE-ON-BISECTOR Strategy	90		
	8.2	Analysis of the strategy	90		
9	Con	iclusion and Outlook	99		
Bi	Bibliography				

.