Delaunay Mesh Generation

Siu-Wing Cheng Tamal Krishna Dey Jonathan Richard Shewchuk

CRC Press is an imprint of the Taylor & Francis Group, an Informa business A CHAPMAN & HALL BOOK

Contents

Preface						
1	Introduction					
	1.1	Meshes and the goals of mesh generation	3			
	· .	1.1.1 Domain conformity	4			
•		1.1.2 Element quality	5			
•	1.2	Delaunay triangulations and Delaunay refinement	8			
	1.3	A brief history of mesh generation	10			
	1.4	A personal history of working in mesh generation	13			
	1.5	Simplices, complexes, and polyhedra	16			
	1.6	Metric space topology	19			
	1.7	How to measure an element	22.			
	1.8	Notes and exercises	27			
2	Two-dimensional Delaunay triangulations					
,	2.1	Triangulations of a planar point set	31			
	2.2	The Delaunay triangulation	32			
	2.3	The parabolic lifting map	33			
,	2.4	The Delaunay Lemma	35			
	2.5	The flip algorithm	37			
	2.6	The optimality of the Delaunay triangulation	40			
	2.7	The uniqueness of the Delaunay triangulation	41			
	2.8	The weighted Delaunay triangulation	43			
	2.9	Symbolic weight perturbations	45			
	2.10	Constrained Delaunay triangulations in the plane	46			
		2.10.1 Piecewise linear complexes and their triangulations	47			
		2.10.2 The constrained Delaunay triangulation	50			
	. •	2.10.3 Properties of the constrained Delaunay triangulation	51			
	2.11	Notes and exercises	52			
3	Algo	orithms for constructing Delaunay triangulations	55			
	3.1	The orientation and incircle predicates	56			
	3.2	A dictionary data structure for triangulations	58			

	3.3	Inserting a vertex into a Delaunay triangulation	59			
	3.4	Inserting a vertex outside a Delaunay triangulation	61			
	3.5	The running time of vertex insertion	64			
	3.6	Optimal point location by a conflict graph	66			
	3.7	The incremental insertion algorithm	70			
	3.8	Deleting a vertex from a Delaunay triangulation	71			
	3.9	Inserting or deleting a vertex in a CDT	73			
	3.10	Inserting a segment into a CDT	74			
-	3.11	The gift-wrapping algorithm	77			
	3.12	Notes and exercises	80			
4	Thre	nree-dimensional Delaunay triangulations 85				
	4.1	Triangulations of a point set in \mathbb{R}^d	86_			
	4.2	The Delaunay triangulation in \mathbb{R}^d	86			
	4.3	The optimality of the Delaunay triangulation in \mathbb{R}^d	89			
	4.4	Bistellar flips and the flip algorithm	91			
	4.5	Three-dimensional constrained Delaunay triangulations	95			
		4.5.1 Piecewise linear complexes and their triangulations in \mathbb{R}^d	96			
`		4.5.2 The constrained Delaunay triangulation in \mathbb{R}^3	98			
•		4.5.3 The CDT Theorem	100			
· ,		4.5.4 Properties of the constrained Delaunay triangulation in \mathbb{R}^3	101			
•	4.6	Notes and exercises	102			
			105			
5	Algo	brithms for constructing Delaunay triangulations in \mathbb{R}^3	105			
	5.1	A dictionary data structure for tetranedralizations	106			
. ``	5.2	Delaunay vertex insertion in \mathbb{R}^3	106			
	5.3	Blased randomized insertion orders	108			
	5.4	Optimal a conflict graph in \mathbb{R}^2	110			
	, 3.3	Point location by walking $\dots \dots \dots$	113			
	5.6	The gift-wrapping algorithm in \mathbb{R}^3	114			
	5.7	Inserting a vertex into a CDT in \mathbb{R}^3	115			
	5.8	Inserting a polygon into a CD1	115			
	5.9	Notes and exercises	120			
6	Dela	aunay refinement in the plane	123			
	6.1	A generic Delaunay refinement algorithm	124			
•.	6.2	Ruppert's Delaunay refinement algorithm	126			
	6.3	Implementation and running time	129			
	6.4	A proof of termination	131			
	6.5	A proof of size optimality and optimal grading	137			
	6.6	Meshing domains with small angles	142			
-	6.7	Constrained Delaunay refinement	147			
	6.8	Notes and exercises	148			

Contents

7 : •	Voro	noi diagrams and weighted complexes	153
1	7.1	Voronoi diagrams	154
·	7.2	Weighted Voronoi and weighted Delaunay	156
		7.2.1 Properties of orthoballs	159
• •	7.3	Quarantined complexes	161
		7.3.1 The Monotone Power Lemma	162
/ .		7.3.2 The Orthoball Cover Lemma	163
		7.3.3 The Orthocenter Containment Lemma	165
1	7.4	Notes and exercises	166
8	Tetra	hedral meshing of PLCs	169
,	8.1	A tetrahedral Delaunay refinement algorithm	171
	8.2	Implementation and running time	176
	8.3	A proof of termination and good grading	177
	8.4	Refining slivers away	184
<i>,</i> ••	8.5	Constrained Delaunay tetrahedral refinement	184
	8.6	Notes and exercises	185
9	Weig	hted Delaunay refinement for PLCs with small angles	189
-	9.1	The ideas behind weighted Delaunay refinement	190
	9.2	Protecting vertices and segments	191
	9.3	The refinement stage	195
	9.4	A proof of termination and good grading	197
	9.5	Notes and exercises	201
-10	Slive	r exudation	207
10	10.1	The main idea and the algorithm	208
	10.2	Implementing sliver exudation	210
	10.3	The union of weighted Delaunav triangulations	211
		10.3.1 Orthoradius-edge ratios of tetrahedra in $K(S, \alpha)$	212
	•	10.3.2 Circumradii of triangles in $K(S, \alpha)$	216
		10.3.3 The variation of edge lengths in Del S and $K(S, \alpha)$	219
		10.3.4 The degrees of vertices in $K(S, \alpha)$	221
	10.4	The Sliver Theorem	223
	10.5	Notes and exercises	226
11	Dofi	noment for sliver evudation	231
11	111	Domain conformity with uncertain vertex weights	232
	-11.1 -11.2	A refinement algorithm for sliver exudation	233
	11.2	A guarantee of domain conformity during sliver exudation	235
	11.3	A proof of termination good quality and good grading	236
	11.4	Finite triangulations and the Sliver Theorem	240
· .	11.5	Notes and everyises	240
	0.11		242

12	Smo	oth surfaces and point samples	245
	12.1	Topological spaces	245
	12.2	Maps, homeomorphisms, and isotopies	247
	12.3	Manifolds	251
	12.4	Smooth manifolds	252
	12.5	The medial axis and local feature size of a smooth manifold	253
		12.5.1 The medial axis	254
		12.5.2 Definition of the local feature size	256
		12.5.3 Point samples on manifolds	,257
		12.5.4 Properties of a surface and its medial axis	259
	12.6	The variation in normal vectors on smooth surfaces	261
	12.7	Approximations of tangents by simplices	264
		12.7.1 Short edges are almost parallel to the surface	264
		12.7.2 Triangles with small circumradii are almost parallel	266
	12.8	Notes and exercises	268
-			
13	Rest	ricted Delaunay triangulations of surface samples	271
	13.1	Restricted Voronoi diagrams and Delaunay triangulations	272
	13.2	The Topological Ball Theorem	. 274
	13.3	Distances and angles in ε -samples	276
	13.4	Local properties of restricted Voronoi faces	. 278
	13.5	Global properties of restricted Voronoi faces	. 289
	13.6	The fidelity of the restricted Delaunay triangulation	. 291
		13.6.1 The nearest point map is a homeomorphism	. 291
		13.6.2 Proximity and isotopy	. 293
		13.6.3 Fidelity and dihedral angles of the discretized surface	. 296
	13.7	Notes and exercises	. 298
14	Mac	hing smooth surfaces and volumes	301
14	1/1 1	Delaunay surface meshing with a known local feature size	302
	14.1	14.1.1 Proof of termination and guarantees	304
		14.1.2 Deleting two vertices of the persistent triangle	304
		14.1.3 Computing edge-surface intersections	307
	142	Topology driven surface meshing	308
	17.2	14.2.1 Diagnosing violations of the topological ball property	308
		14.2.2 A topology-driven Delaunay refinement algorithm	313
; '		14.2.2 A topology-unven beladinary termement algorithm	313
	143	A practical surface meshing algorithm	314
	14.0	Extensions: quality smoothness and polyhedral surfaces	318
	14.4	Tetrahedral meshing of volumes with smooth boundaries	322
	1-4.5	14.5.1 Proof of termination and guarantees	325
	14.6	Notes and exercises	320
	1-4.0		. 549

Contents

15	Mesł	ning pie	cewise smooth complexes				333
	15.1 Piecewise smooth complexes and their triangulations						334
	15.2	An algo	rithm for meshing PSCs				335
		15.2.1	Protection and the relaxed ball properties				336
		15.2.2	The protection stage				338
		15.2.3	Refining the protecting balls				. 342
		15.2.4	The refinement stage				344
	15.3	The bal	I properties and the PSC Lemma				347
		15.3.1	The ball properties			•••	. 347
		15.3.2	The PSC Lemma				. 350
		15.3.3	Proof of the PSC Lemma				352
	15.4	A proof	of termination				. 356
	15.5	Manifo	ld patch triangulations and homeomorphism				. 359
	15.6	Extensi	ons: polygonal surfaces, quality, and tetrahedra				. 364
	15.7	Notes a	nd exercises			•••	. 364
Bił	bliogr	aphy					369

Index

s+,

387