Microprocessor-Based Control Systems

edited by

NARESH K. SINHA

Department of Electrical and Computer Engineering, McMaster University, Ontario, Canada

D. REIDEL PUBLISHING COMPANY

A MEMBER OF THE KLUWER

ACADEMIC PUBLISHERS GROUP

DORDRECHT / BOSTON / LANCASTER / TOKYO

CONTENTS

Preface
Contributors

xi xiii

1

3 5

Chapter 1 MICROPROCESSORS IN CONTROL SYSTEMS – OUTLINE OF THE BOOK N. K. Sinha

Introduction Outline of the book References

> Chapter 2 SOME ASPECTS OF MICROPROCESSOR-BASED CONTROL AND IDENTIFICATION *G. P. Rao, S. Sinha, D. S. Naidu and N. K. De*

Introduction	7
Implementation of simple classical control techniques	8
Motion control system	12
On-line parameter identification in continuous dynamical systems	23
References	33

Chapter 3 SELF-TUNING AND ADAPTIVE CONTROL D. W. Clarke

Introduction	35
General plant and predictor models	39
Predictive control	42
Parameter estimation	46
Self-tuning	51
Implementation and use	55
PID self-tuners	56
Conclusions	57
References	57

Chapter 4 ADAPTIVE CONTROL OF SYNCHRONOUS MACHINE EXCITATION O. P. Malik

Introduction	61
Adaptive control	62
Adaptive controllers for power systems	70
Microcomputer implementation of adaptive controller	72
Experimental results	73
Adaptive controller with variable forgetting factor and self-searching pole-shift	73
Concluding remarks	78
References	78

Chapter 5 MICROPROCESSOR-BASED SYSTEM IDENTIFICATION BY SIGNAL COMPRESSION METHOD N. Aoshima

Introduction	81
Principle of the signal compression method	82
Example of the measuring procedure	86
Applications	91
References	103

Chapter 6 DIGITAL SYSTEM CONTROLLERS FOR EXACT MODEL SIGNAL TRACKING *G. H. Hostetter*

Introduction	105
System models	107
Step-invariant controller design	113
Step-invariant design example	120
Deadbeat controllers for step-varying systems	123
Conclusion	128
References	128

CONTENTS

Chapter 7 MICROPROCESSOR-BASED CONTROL OF DC MOTORS M. R. Stojic

Introduction	131
System description	132
Selection of the desired closed-loop pole positions	140
Application	145
Programming	147
Conclusion	153
References	154

Chapter 8 MICROPROCESSOR-BASED AC MOTOR CONTROL M. H. Park

Introduction	157
Adjustable speed AC motor drives	158
Signal processing using a microprocessor and peripheral ICs	162
AC motor drives with microprocessors	167
Conclusion	180
References	180

Chapter 9 MICROPROCESSOR-BASED NONLINEAR CONTROLLER FOR THE ROLL MOTION OF A MODEL AIRCRAFT N. A. Krikelis

Introduction	183
Roll motion equation	184
Proposed nonlinear control scheme	186
Microprocessor implementation of the controller	188
Roll motion simulation results	194
Conclusions	198
Appendix A	198
Appendix B	201
References	203

vii

Chapter 10 A MICROPROCESSOR-BASED CONTROL SYSTEM FOR A GLASS FURNACE H. N. Koivo and A. Setälä

Introduction	205
Process description	206
Modelling	209
Control of the melting furnace	212
Computer control systems in the glass industry	216
A microcomputer system for a glass furnace	217
Conclusions	220
References	222

Chapter 11 MULTI-PROCESSOR ROBOT CONTROL SYSTEM USING MICROPROGRAMMING *M. Jelšina*

Control of robotic system	223
Multilevel structure of robot control system	226
Architecture of multiprocessor robot control system	227
Microprogrammable architecture of executive level of robot control system	230
The algorithms of the microprogramme control of the robot control system executive level	244
Conclusion	246
References	247

Chapter 12 COMPUTER CONTROL SYSTEM FOR THE TRAINING SIMULATOR *K. Furuta and Y. Ohyama*

Introduction	249
Design of model following servo system	251
Dynamics of simulator	252
Experiment	253
Conclusion	257
References	260
Appendix A	260
Appendix A	260

CONTENTS

Chapter 13 MICROCONTROL-BASED DIRECT NUMERICAL CONTROL *R. Kitai and T. P. Taylor*

Introduction	263
Principles of numerical control	265
DNC system design and implementation	273
Conclusions	277
References	277

Chapter 14 MICROPROCESSOR-BASED REPETITIVE CONTROL M. Nakano and S. Hara

Introduction	279
Principle of repetitive control	280
Configuration and properties of modified repetitive control system	283
Design principle and implementation of repetitive control system	289
Application	290
Conclusion	294
References	295

Chapter 15 REAL-TIME PROGRAMMING LANGUAGES FOR PROCESS CONTROL

Introduction	297
Pascal	298
Concurrent Pascal	302
Modula-2	305
Ada	307
FORTH	311
Conclusion	315
References	315

Chapter 16 INDUSTRIAL LAN USING DISTRIBUTED MICROPROCESSORS O. L. Storoshchuk and B. Szabados

Introduction	317
Microprocessor hardware	323
Kernel executive	333
Conclusions and recommendations	339
References	341

ix

Chapter 17 MICROCOMPUTER-EMBEDDED DISTRIBUTED CONTROL OF A SWITCHING AND COMMUNICATION SYSTEM D. Tabak and J. Etkin

Introduction	343
The evolution of switching and communication systems	345
Distributed control of a switching and communication system	347
Control and implementation of the distributed communication system	352
The dynamic aspect of the system	360
Software structure of the distributed communication system	363
Conclusion and future directions	365
References	366

Chapter 18 MICROPROCESSOR-BASED DATA REDUCTION AND COMPRESSION SYSTEMS S. G. Tzafestas and G. Papakonstantinou

369
370
386
396
396

Index

х

401