FORCE-FREE MAGNETIC FIELDS Solutions, topology and applications

Gerald E Marsh

CONTENTS

Preface	v
Chapter 1. INTRODUCTION	1
1.1. Force-Free Magnetic Fields and Hydrodynamics 1.2. Relevance of Force-Free Magnetic Fields to Astrophysics and Solar	4
Physics	6
Chapter 2. THE VIRIAL THEOREM	9
2.1 The Virial Theorem Applied to Magnetic Fields	10
2.1.1. Virial Condition in Terms of the Magnetic Field Vectors	11
2.1.2. Virial Condition in Terms of the Maxwell Stress Tensor	13
2.2 Practical Applications of the Virial Theorem	14
Chapter 3. SOLUTIONS TO THE FORCE-FREE FIELD EQUATIONS	
Wave Equation	
3.1.1 The "Vector" Wave Equation	
3.1.2 The "Scalar" Wave Equation	
3.1.3 Wave Equation Solutions for Ballabh's Generalization of the	
Force-Free Field Equations	24
3.2 Non-Constant α Solutions to the Force-Free Field Equations in Spherical and	24
Cylindrical Coordinates	25
3.2.1 Flux Functions, Toroidal and Poloidal Fields	
3.2.2 Spherically Symmetric Solutions	
3.2.2.1 Separation of the Grad-Shafranov Equation in Terms of an	20
Arbitrary Function	
3.2.2.2 Solution of the Separated Grad-Shafranov Equation	29

3.2.3 Axially Symmetric Solutions
3.2.3.1 The Grad-Shafranov Equation for Axial Symmetry
3.2.3.2 A Hierarchical Set of Solutions for a Special Class of
Fields
3.2.3.2.1 Solution for the Case where $H = [0, H_{\phi}(r), H_{z}(r)] \dots 36$
3.2.3.2.2 An Hierarchical Set of Solutions
3.3 Solutions in Toroidal Coordinates
3.3.1 Toroidal Coordinates
3.3.2 Non-Constant α Field Equations45
3.3.3 Solution in Toroidal Coordinates for Constant α
Chapter 4. FIELD TOPOLOGY
4.1 Magnetic Surfaces
4.1.1. Topology of Non-Constant α Solutions
4.1.2. Topology of Constant α Solutions
4.2 Magnetic Field Helicity
4.2.1. Twist, Kink and Link Helicity
4.2.2. Helicity and Locality
4.2.3. The Classical and Asymptotic Hopf Invariant
4.2.3.1 The Classical Hopf Invariant
4.2.3.2. The Asymptotic Hopf Invariant75
Chapter 5. MAGNETIC ENERGY IN MULTIPLY CONNECTED
DOMAINS
5.1 Gauge Invariance
5.2 De Rham's Theorems and Homology
5.3 Physical Interpretation of the Magnetic Energy Boundary Term
5.3.1. Physical Examples
5.3.1.1. Ring Current in a Toroidal Domain
5.3.1.2. Application to Force-Free Fields
Chapter 6. APPLICATIONS
6.1 Solar Prominence Models
6.2 Type II Superconductors108

ò

viii

CONTENTS

Appendix 1. FORCE-FREE FIELDS AND ELECTROMAGNETIC	
WAVES	119
A1.1 Electromagnetic Fields with <i>E</i> Parallel to <i>B</i>	119
A1.2 The Propagation of Electromagnetic Waves in Optically Active Media	124
Appendix 2. PROOF OF THE JACOBI POLYNOMIAL IDENTITIES	5129
Appendix 3. SEPARATION OF THE WAVE EQUATION,	
CYCLIDES, AND BOUNDARY CONDITIONS	133
A3.1 Separation of the Wave Equation	
A3.2 Cyclides	143
A3.3 Boundary Conditions for the Helmholtz and Vector Wave Equation	
INDEX	155

•••••

ix