K-Theory for Operator Algebras

Second Edition

Bruce Blackadar

University of Nevada, Reno

CONTENTS

PREFACE TO SECOND EDITION			
PRE	FACE	TO FIRST EDITION	xiii
Chaj	pter I.	INTRODUCTION TO K-THEORY	1
1	Survey	of Topological K-Theory	1
	1.1	Vector Bundles	1
	1.2	Whitney Sum	3
	1.3	The Grothendieck Group	4
	1.4	The K-Groups	4
	1.5	Locally Compact Spaces	5
	1.6	Exact Sequences	5
	1.7	Algebraic Formulation of K-Theory	7
2	Overvi	ew of Operator K-Theory	9
	2.1	Noncommutative Topology	9
	2.2	The K_0 -Functor	10
	2.3	The K_1 -Functor	11
	2.4	Extensions of C^* -Algebras	11
	2.5	KK-Theory	12
	2.6	Further Developments	13
Chaj	pter II.	PRELIMINARIES	15
3	Local	Banach Algebras and Inductive Limits	15
	3.1	Local Banach Algebras	15
	3.2	Unitization	16
	3.3	Inductive Limits	17
	3.4	Invertible Elements	18
4	Idemp	otents and Equivalence	19
	4.1	Idempotents	20
	4.2	Equivalence of Idempotents	20
	4.3	Algebraic Equivalence, Similarity, and Homotopy	20
	4.4	Similarity vs. Homotopy	21
	4.5	Equivalence and Completion	22

And the second second

	4.6	Projections	22
	4.7	Exercises and Problems	24
	Notes	for Chapter II	25
Cha	pter III	K_0 -THEORY AND ORDER	27
5	Basic	K_0 -Theory	27
	5.1	Basic Definitions	27
	5.2	Properties of $V(A)$	28
	5.3	Preliminary Definition of K_0	29
	5.4	Relative K-Groups	29
	5.5	Definition of $K_0(A)$	30
	5.6	Exactness of K_0	31
	5.7	Exercises and Problems	32
6	Order	Structure on K_0	32
	6.1	Introduction	32
	6.2	Ordered Groups	33
	6.3	$K_0(A)$ as an Ordered Group $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	34
	6.4	Cancellation	36
	6.5	Stable Rank	36
	6.6	Classification of Stably Isomorphic C^* -Algebras	38
	6.7	Perforation	39
	6.8	States on Ordered Groups	40
	6.9	Dimension Functions and States on $K_0(A)$	41
	6.10	Exercises and Problems	42
	6.11	Properly Infinite C^* -Algebras	45
7	Theory	y of AF Algebras	48
	7.1	Basic Definitions	48
	7.2	Representation by Diagrams	49
	7.3	Dimension Groups	49
	7.4	Classification of Dimension Groups	51
	7.5	UHF Algebras	52
	7.6	Other Simple AF Algebras	53
	7.7	Exercises and Problems	55
Cha	pter IV	. K_1 -THEORY AND BOTT PERIODICITY	59
8	Higher	r K-Groups	59
-	8.1	Definition of $K_1(A)$	59
	8.2	Suspensions	61
	8.3	Long Exact Sequence of K-Theory	62
9	Bott F	Periodicity	64
0	9.1	Basic Definitions	64
	9.2	Proof of the Theorem	65

xvi

CONTENTS

	9.3	Six-Term Exact Sequence	67
	9.4	Exercises and Problems	68
	Notes	for Chapter IV	70
Cha	pter V.	K-THEORY OF CROSSED PRODUCTS	71
10	The Pi	msner–Voiculescu Exact Sequence and Connes' Thom Isomor-	
	phism		71
	10.1	Crossed Products	71
	10.2	Crossed Products by \mathbb{Z} or \mathbb{R}	72
	10.3	The Mapping Torus	74
	10.4	Proof of the P-V Sequence	75
	10.5	Homotopy Invariance	76
	10. 6	Exact Sequence for Crossed Products by \mathbb{T}	77
	10.7	Exact Sequence for Crossed Products by Finite Cyclic Groups	77
	10.8	Crossed Products by Amalgamated Free Products	78
	10.9	Proof of the Thom Isomorphism	79
	10.10	Order Structure and Traces on $A \times_{\alpha} \mathbb{Z}$	83
	10.11	Exercises and Problems	86
11	Equiva	riant K-Theory	92
	11.1	Group Algebras	92
	11.2	Projective Modules	93
	11.3	Projections	94
	11.4	G-Vector Bundles	95
	11.5	Definition of Equivariant K_0	95
	11.6	Homotopy Invariance	96
	11.7	Relation with Crossed Products	97
	11.8	Module Structure on $K_0(A \times_{\alpha} G)$	98
	11.9	Properties of Equivariant K-Theory	99
	11.10	Equivariant K-Theory for Noncompact Groups	100
	11.11	Exercises and Problems	100
Cha	pter VI.	MORE PRELIMINARIES	103
12	Multip	lier Algebras	103
	12.1	Introduction	103
	12.2	K-Theory and Stable Multiplier Algebras	104
	12.3	σ -Unital C*-Algebras	105
	12.4	Kasparov's Technical Theorem	105
	12.5	Exercises and Problems	107
13	Hilber	t Modules	108
	13.1	Basic Definitions	108
	13.2	Bounded Operators on Hilbert Modules	109
	13.3	Regular Operators	110
	13.4	Hilbert Modules and Multiplier Algebras	110

COI	NTEN	тs
-----	------	----

	13.5	Tensor Products of Hilbert Modules	111
	13.6	The Stabilization or Absorption Theorem	111
	13.7	Exercises and Problems	113
14	Grade	d C^* -algebras	114
	14 .1	Basic Definitions	114
	14.2	Graded Hilbert Modules	116
	14.3	Graded Homomorphisms	116
	14.4	Graded Tensor Products	116
	14.5	Structure of Graded Tensor Products	118
	14.6	Miscellaneous Theorems	119
	14.7	Exercises and Problems	120
Cha	pter VI	I. THEORY OF EXTENSIONS	121
15	Basic	Theory of Extensions	121
10	15.1	Basic Definitions	121
	15.2	The Bushy Invariant	122
	15.3	Pullbacks	122
	15.4		123
	15.5	Trivial Extensions	125
	15.6	Additive Structure	126
	15.7	Inverses	128
	15.8	Nuclear C^* -Algebras	129
	15.9	Functoriality	131
	15.10	Homotopy Invariance	131
	15.11	Bott Periodicity. Exact Sequences	132
	15.12	Absorbing Extensions	132
	15.13	Extensions of Graded C^* -Algebras	134
	15.14	Extensions and K-Theory	134
16	Brown	Douglas-Fillmore Theory and Other Applications	135
10	16 9	Essentially Normal Operators	135
	16.2	Ext as K-Homology	137
	16.4	Exercises and Problems	139
Cha	nter VI	II KASPAROV'S KK-THEORY	143
17	Decio 1	Theomy	1/2
17	17 1		140
	17.1	Rasparov Modules	140
	17.2		141
	11.3	The AA-Groups	149
	17 E	Standard Shiphingations	152
	17.0	requirements of $Cust = \frac{P(A, B)}{P(A, B)}$	100
	177	Quasinomomorphism or Quitz Picture of $AA(A, B)$	150
	170		150
	17.8	runctoriality	128

	17.9	Homotopy Invariance	161
	17.10	Cobordism and Isomorphism of KK_{ab} and KK_{c}	161
	17.11	Unbounded Kasparov Modules	163
18	The In	tersection Product	166
10	18.1	Description of the Product	166
	18.2	Outline of the Construction	166
	18.3	Connections	169
	18.4	Construction of the Product	172
	18.5	Isomorphism of KK_{k} and KK_{ck}	175
	18.6	Associativity	178
	18.7	Functoriality	179
	18.8	Ring Structure on $KK(A, A)$	179
	18.9	General Form of the Product	180
	18.10	Products on KK^1	181
	18.11	Extendibility of <i>KK</i> -Elements	183
	18.12	Recapitulation	184
	18.13	Exercises and Problems	185
10	Et alle		107
19	Furthe	<i>KK</i> Engine lange	18/
	19.1	RA-Equivalence	187
	19.2	Bott Periodicity	189
	19.3	I nom isomorphism	190
	19.4	Mapping Cones and Puppe Sequences	193
	19.5 10.6	Exact Sequences	195
	19.0	Pimsner-volculescu Exact Sequences	198
	19.7	Countable Additivity	199
	19.0	Recapitulation	200
	19.9		201
20	Equiva	riant KK -Theory	204
	2 0.1	Preliminaries	205
	20.2	The Equivariant KK-Groups	206
	20.3	The Intersection Product	207
	20.4	The Representation Ring	208
	20.5	Restriction and Induction	209
	20.6	Relation with Crossed Products	210
	20.7	Connected Groups	211
	20.8	Discrete Groups	213
	20.9	K-Theoretic Amenability for Groups	213
	20.10	Exercises and Problems	215
Char	oter IX.	FURTHER TOPICS	217
2 1	Homol	ogy and Cohomology Theories on C^* -Algebras	217
	21.1	Basic Definitions	217

xix

CO	NT	'EN	TS
----	----	-----	----

	21.2	Maver-Vietoris Sequence	219
	21.3	Continuity	220
	21.4	Half-Exact Functors	222
	21.5	Applications to KK-Theory	223
9 9	Avion	spin K Theory	224
22	200 1	KK as a Category	224
	22.1 99.9	Universal Enveloping Categories	220
	22.2	Functors on KK and Axiomatic K. Theory	220
	22.0 00 /	Functors on A Rand Axiomatic A-Theory	221
	<i>44.</i> 4		200
23	Univer	rsal Coefficient Theorems and Künneth Theorems	232
	23.1	Statements of the Theorems	232
	23.2	Proof of the Special UCT	234
	23.3	Proof of the Special KT	235
	23.4	Proof of the Special KTP	235
	23.5	Geometric Resolutions of C^* -Algebras	236
	23.6	Proof of the General KTP	238
	23.7	Proof of the General KT	239
	23.8	Proof of the General UCT	239
	23.9	Naturality	240
	23.10	Some Corollaries	240
	23.11	Splitting	243
	23.12	The General KT	243
	23.13	Extensions of the Theorems	243
	23.14	Equivariant Theorems	244
	23.15	Exercises and Problems	245
24	Survey	y of Applications to Geometry and Topology	248
	24.1	Index Theorems	248
	24.2	Homotopy Invariance of Higher Signatures	253
	24.3	Positive Scalar Curvature	255
	24.4	The Baum–Connes Conjecture	257
	24.5	KK-Theoretic Proofs	258
25	E_{\bullet} The	2017	260
20	25 1	Asymptotic Mornhisms	261
	25.1	Tensor Products and Suspensions	265
	20.2	Composition	265
	20.0	Additive structure	268
	20.4 95 K	Fract Sequences	200
	20.0 95 A	Aviomatic E Theory	210 977
	20.0 95 7	Exercises and Droblems	411 970
	20.1		419
REI	FEREN	CES	283

INDEX

297