Surface Acoustic Waves for Signal Processing

Michel Feldmann and Jeannine Hénaff Centre National d'Etudes des Télécommunications FRANCE TELECOM

translated by S. Chomet

Preface by Professor Eric A. ASH

ARTECH HOUSE Boston and London

Contents

Foreword Introduction and organization of the book			xi
			xiii
Note	es on th	ne references	xx
Chapter 1 Generalities: piezoelectric models		1	
1.1	The n	nicroscopic field	1
	1.1.1	Simple purely acoustic model	1
	1.1.2	More elaborate models: piezoelectricity and nonlinearity	3
1.2	Macro	oscopic description	5
	1.2.1	Displacement and strain	6
	1.2.2	Surface forces and stresses	7
	1.2.3	Short-range forces and elasticity	9
	1.2.4	Long-range forces and piezoelectricity	11
1.3	Geom	etric and thermodynamic symmetries	12
	1.3.1	Geometric symmetries	12
	1.3.2	Thermodynamic relations	13
	1.3.3	Other formulations and conventions	15
1.4	Brief	survey of piezoelectric materials	16
App	endix	1.1 Brief review of tensors with orthonormal frames of	
		reference	18
App	endix	1.2 Symmetry of dielectric, elastic and piezoelectric coef-	
		ficients	20
Exe	rcises		28
Cha	pter 2	Plane waves: bulk and surface piezoelectric permittivity	29
2.1	Gener	ralities: bulk waves	29
	2.1.1	Scalar model of piezoelectricity	30

SURFACE ACOUSTIC WAVES FOR SIGNAL PROCESSING

	2.1.2	Plane-wave solution in the case of an infinite rod	30
	2.1.3	Bulk piezoelectric permittivity	31
2.2	Surfa	ce waves	36
	2.2.1	Electrostatic model	36
	2.2.2	Mathematics of surface-wave propagation	37
	2.2.3	Discussion of surface permittivity	41
		Discussion and other modes	45
		Geometric and wave acoustics	46
		2.1 Determination of the slowness curve	51
		2.2 Energy transport velocity	54
App	endix 2	2.3 Reciprocal relations in the time-harmonic regime	55
Cha	pter 3	Piezoelectric depolarization waves	59
3.1	Bulk	waves	59
	3.1.1	Purely electrostatic model	59
	3.1.2	The case of a single capacitance	60
	3.1.3	Single-mode piezoelectric model	62
		Piezoelectric capacitor	62
		Physical interpretation: depolarization waves	65
		Energy balance: radiation resistance	65
		Propagation of depolarization waves	66
		Characteristic impedance	67
		Reception of depolarization waves	67
		Radiation resistance and self-depolarization	68
		Multimode problems	69
3.2		ce waves	69
		Purely electrostatic model	69
		Electrostatic capacitance	70
		Piezoelectric mode model	73
		Piezoelectric capacitance	74
		Depolarization waves and radiation resistance	77
		Reception of depolarization waves	78
		Radiation resistance and self-depolarization	78
		Piezoelectric two-port network	79
		Characteristic impedance	80
3.3		ce pseudowaves	80
3.4		el for a Bleustein-Gulyaev type branch	80
		Depolarization waves	80
29		Depolarization of a capacitance	81
		Piezoelectric two-port network	82
3.5		W waves	82
3.6	Mult	imode problem	83

vi

CONTENTS

App	endix 3	3.1 Inversion of eqn (3.7)	83
		3.2 Evaluation of electrostatic capacitances	84
		3.3 Calculation of the depolarization potential as a function	
· · · PP	entant e	of the electrostatic charge (the case of Rayleigh modes)	88
App	endix 3	8.4 Calculation of the depolarization potential as a function	00
F F		of the electrostatic potential	89
Exer	rcise		93
Chaj	pter 4	Piezoelectric transducers	95
4.1	Piezoe	electric capacitance models	95
	4.1.1	Single capacitance	95
	4.1.2	Two-capacitance system	97
4.2	Rayle	igh-type depolarization waves	99
	4.2.1	Effective amplitude	99
	4.2.2	Interaction between a piezoelectric wave and a capacitance	100
	4.2.3	Interaction between a piezoelectric wave and a short-	
		circuited array	101
4.3	The ty	wo-phase piezoelectric transducer	103
	4.3.1	Regular transducer	104
	4.3.2	Grating array transducer	110
	4.3.3	Unidirectional transducer	112
4.4	Multi	strip couplers	114
	4.4.1	Description	114
	4.4.2		115
	4.4.3	Operation as a transmitter (MSC, MTA)	118
	4.4.4	-	125
4.5	Low-l	oss transducers	128
	4.5.1	Analysis of the different losses	128
		Unidirectional inductive transducers	130
	4.5.3	Multiphase air-gap transducers	130
		Unidirectional group transducers	131
	4.5.5	Filter with overlapping access ports	132
4.6	Bleust	tein-Gulyaev and SSBW waves	132
App		4.1 Interdigital transducer with regular geometry	135
		4.2 Impedance of the regular comb	137
	rcises		140
Cha	pter 5	Frequency filters	143
5.1	-	formation effected by a surface-wave transducer	143
5.1	5.1.1	Single capacitance	143
	5.1.1	Complex comb	143
	J.1.2		144

vii

viii SURFACE ACOUSTIC WAVES FOR SIGNAL PROCESSING

5.2	Synthe	esis of transverse filters (FIR)	146
	5.2.1	Generalities	146
	5.2.2	Synthesis of transversal filters by the window method	151
	5.2.3	Algorithmic synthesis	157
	5.2.4	Phase-modulated filters	157
	5.2.5	Double modulation filters	157
	5.2.6	Other modulation procedures	158
5.3	SWF	design based on transversal filters	159
	5.3.1	Design rules	159
	5.3.2	Synthesis	164
	5.3.3	Simulation	164
5.4	Multi	strip filters	164
	5.4.1	Multistrip array filters	165
	5.4.2	Slanted reflector array filters	168
5.5	Resor	nator filters	170
	5.5.1	The concept of the resonator	170
	5.5.2	Filter synthesis	174
5.6	Multi	phase filters	175
5.7	Appli	cations	177
Cha	pter 6	Oscillators	195
6.1	Histo	ry	195
6.2	Princi	ple of the acoustic surface wave oscillator	196
	6.2.1	Oscillator using true surface models	196
	6.2.2	Other oscillation modes	199
6.3	Chara	acterization of SAW oscillators	200
	6.3.1	Short-term stability	200
	6.3.2	Medium-term stability	205
	6.3.3	Long-term stability	206
6.4	Tuna	ble oscillators	206
	6.4.1	Principles	206
	6.4.2	Amplitude-to-frequency conversion	208
6.5	Sumn	nary of current performance	208
6.6	Notes	s on applications	209
Cha	pter 7	Nonlinear effects and applications	217
7.1	Acou	stoelectric interaction	217
	7.1.1	Principles	217
	7.1.2	Electronic gain	218
	7.1.3	Acoustoelectric current	220
	1.1.5		220

	7.1.5	Long delay lines	222
		Inverse acoustoelectric effect	222
7.2	Nonli	near interactions between acoustic surface waves	223
	7.2.1	Principle of nonlinear interactions	223
		Interaction between contradirected surface waves	224
	7.2.3	Noncollinear interactions	230
	7.2.4	Interaction between several branches	235
7.3	Gener	al survey of the CZT transformation and spectral analysis	237
		Principle of the CZT transformation	237
		Implementation	238
		Discussion and other forms of spectral analysis	239
		Conclusion	240
7.4	Gener	al survey of acousto-optic interactions	241
7.5	Concl	usion	244
Cha	pter 8	Materials and technology	245
8.1		ials for surface waves	245
		Computer program	246
		Results for quartz	248
		Results for lithium tantalate	250
		Results for lithium niobate	252
		Results for berlinite	253
	8.1.6	The thallium chalcogenides	253
		The "banana"	254
	8.1.8		255
8.2		n of masks for SAW devices	256
		Device design	256
		Program for fabricating transducer masks	260
		Necessary equipment	260
8.3		iques for fabricating SAW devices	261
	8.3.1	Exposure	262
		Etching	265
	8.3.3	Mounting and matching	267 270
8.4	Example of device design		
	8.4.1	Specification	270
	8.4.2		271
		Filter synthesis	272
		Simulation and final design	275
		Comb layout	279
	8.4.6	Fabrication	279
	8.4.7	Measurements	280

ix

SURFACE ACOUSTIC WAVES FOR SIGNAL PROCESSING

Chapter 9 Conclusion and perspectives

References

Appendices

Appendix A GROK program to compute the "exact" driving point impedance of a regular SAW transducer with large coupling	295
Appendix B CAREFLEX computation of arbitrary multistrip array	297
Appendix C ABAC1 feasible Dolph-Chebyshev windows	309
Appendix D Program for designing optimum FIR linear phase digital filters (McClellan et al. 1973)	313
Appendix E GENEFOS program of synthesis of SAW filters using a window and a conventional prototype	322
Appendix F VERIFOS program to compute frequency response of FIR filters	333
Appendix G MAREFOS program to compute arbitrary SAW device	336
Appendix H S_{21} computation of the transfer function of SAW delay lines	354
Appendix I AMPLIF computation of acousto-electric gain and saturation	358
Appendix J SURFTSS computation of piezoelectric velocities in arbitrary orientation and temperature	362
Appendix K POM program for tracing computer masks	391
Appendix L PEIGNE program of matching of SAW transducers	396
Appendix M ATAFIC miscellaneous library routines used in the previous programs	399
Index	403

283