Limnology and Remote Sensing

A Contemporary Approach

Published in association with **Praxis Publishing** Chichester, UK

Contents

Pr	eface			v
1	Con	tempora	ary limnological problems: local, regional and global aspects	1
	1.1	Direct	anthropogenic impacts leading to lake eutrophication and	
			c contamination	1
	1.2	Indire	ct anthropogenic impacts stemming from regional climatic	
			nge driven by regional/global changes	8
	1.3	Direct	and feedback mechanisms of interactions of lakes with	
			bient environments (Lakes Ladoga and onega as examples)	15
	1.4		nparative analysis of the American Great Lakes and Lakes	
			loga and Onega ecological status	22
			Lake Onega	22
			Lake Ladoga	24
			North American Great Lakes	28
	1.5		bility, merits and limitations of using a large, deep lake as a	
			sical model of the ocean	36
	Refe	erences		45
2	Fund	damenta	al limnological processes and relevant indicators used in con-	
	te	mporar	y lake studies	53
	2.1	Heat f	lux, storage and budget of a lake water-sediments system	53
		2.1.1		
			base and GIS	53
		2.1.2	Equations for heat storage and budget	56
		2.1.3	Heat flux components. Evaluation and simplification	58
		2.1.4		65
	2.2		oral-spatial variability of lake surface temperature. Global	
		11	roach and classification	76
		2.2.1	Thermal classification of lakes	77
		2.2.2	Global model for lake-surface temperature	78

3

,

	2.2.3	Modelling of altitude effects and thermal classification of	70
2.2	T 1		79
2.3	2.3.1	nal bar in a moderate lake.	82 82
	2.3.1	Discovery and study General description of the phenomenon	82
	2.3.2		85
2.4		Theoretical models and descriptions	
2.4 2.5	•	muir circulation	90
2.5		ormation and its temporal/spatial evolution, ice dynamics rela-	00
		n to the lake thermal regime and weather conditions	98
	2.5.1	Study of freeze-up phase change on large temperate-zone	00
	252	inland water bodies using microwave observation Basic laws of the process of ice-cover formation on large	98
	2.5.2		99
	2.5.3	inland water bodies	99
	2.3.3	Radar signatures of the ice cover of large inland water bodies ($\lambda = 5.7 \text{ cm}$)	105
	2.5.4	Freeze-up phase classification and perspectives of SAR	105
	2.3.4	thematic decoding development	112
2.6	Laka	hydrodynamics and hydrology: weather and climate	112
2.0	2.6.1	Spatial and temporal scales of water motions in lakes	113
	2.6.2	Hydrodynamics of the largest lakes in Europe: Ladoga and	115
	2.0.2	Onega	115
	2.6.3	Hydrodynamics of Lake Ladoga. Large-scale circulation:	
	2.0.5	model results	118
	2.6.4	Hydrodynamics of Lake Onega	120
	2.6.5	Water circulation connected with topographic effects	120
	2.6.6	Currents and dynamics of wind-induced upwelling	123
	2.6.7	Technology of lake observations by remote sensing and as-	120
	2.0.7	similation of these data in a models	126
	2.6.8	Lake hydrodynamics, water ecosystem and climate changes.	120
2.7		acteristics of water motion at various spatial/temporal scales .	128
	2.7.1	Macroscale phenomena	128
	2.7.2	Microscale phenomena.	142
2.8		hydrochemistry and hydrobiota (Lake Ladoga as an example)	148
	2.8.1	Seasonal and spatial distributions in the lake hydrochemical	
		and hydrobiotic constituents. Consequences of anthro-	
		pogenic influences.	148
Ref	erences		157
Moo	lern pa	assive and active optical and microwave remote sensing: ad-	
Va	anced 1	feasibilities for applications in contemporary limnological	
st	udies		169
3.1	Optic	al remote sensing	169
	3.1.1	Passive remote sensing	169
	3.1.2	Active (lidar) remote sensing	242
	3.1.3	Atmospheric correction of satellite images	256

ين

-

	3.2	Passive and active microwave remote sensing	268								
		voirs and watershed parameters	268								
		3.2.2 Active microwave remote sensing of lakes	286								
	Ref	erences	200								
4		ibined <i>in situ</i> and remote sensing of inland water bodies of the moderate	271								
	cl	imatic zone	306								
	4.1	Hydrodynamics of large deep lakes: results of the complex studies.	306								
		4.1.1 Remote studies of major thermohydrodynamic processes and events in lakes, estuaries and coastal zones	306								
		4.1.2 Surface roughness inhomogeneity as indicator of water mass dynamics: spatial variations in areas with subdued									
		roughness driven by water density	311								
	4.2	Thermal regime of lakes: results of complex studies	316								
		4.2.1 Thermal structures of the lakes: transformation in the annual									
		cycle, specific to regional features.	316								
		4.2.2 Retrieving lake temperatures: numerical modeling and results									
		of sub-satellite experiments	327								
		4.2.3 Ice formation and its temporal/spatial evolution: combined <i>in</i>									
		situ and remote-sensing studies	334								
	4.3	Hydrobiological studies.	352								
		4.3.1 Spatial and temporal variations in lake phytoplankton and									
		dissolved organics distribution and macrophyte stands	352								
		4.3.2 Remote assessment of primary production and advective									
		carbon fluxes in aquatic environments	363								
	Ref	erences	368								
5	Geo	graphical Information Systems in limnology	374								
	5.1 Geographical Information Systems: definitions, types, components										
	5.2 GIS functions										
		5.2.1 Visualization	380								
		5.2.2 Query and analysis	380								
		5.2.3 Classification	382								
		5.2.4 Time-series analysis	383								
	5.3	Data	383								
	5.4	Internet and GIS	386								

5.3 E	Data .						•		•				•		•				 •	•		•	•		•	•	• •		38
5.4 I	nterne	et an	d C	IS								•															• •		. 38
5	5.4.1	Inte	erne	t M	lar	o S	erv	vei	rs .			•	•														•		38
5	5.4.2	GIS	5 on	-lin	e	for	th	ie	Ġ	rea	at	La	ak	es													•		. 38
5.5 C	Conclu	ision	ι				•		•									•									•	• •	. 39
Refere	ences								•																				. 39
100000	011000			•••	•••	• •	•	•••	•	•••	• •		•	•••	•	•••	•	•	•		•••	•	•	•••	•	·	• •		
Afterword	I																												. 3