Quantum Theory of Polymers as Solids

János J. Ladik

University of Erlangen-Nuremberg Erlangen, Federal Republic of Germany

Plenum Press • New York and London

Intro	duction	•	1
I. QU ST	JANTUM THEORY OF POLYMERIC ELECTRONIC RUCTURE		
1. Ha	artree–Fock Crystal-Orbital Theory of Periodic Polymers		9
1.1.	Simple Translation		9
	1.1.1. Block Diagonalization of the Hamiltonian Matrix		9
	1.1.2. Elimination of the Overlap Matrix	•	13
	Formalism		16
1.2.	Combined Symmetry Operation		20
1.3.	Methods to Treat Many-Neighbor Interactions		23
1.4.	Different Orbitals for Different Spin Formalisms		29
1.5.	Relativistic Formulation		34
	1.5.1. Introductory Remarks	•	34
	1.5.2. Derivation of the Relativistic Hartree-Fock-		
	Roothaan Equations for Molecules and Crystals .		35
	1.5.3. Concluding Remarks	•	44
Refe	rences		49
2. E	xamples of Ab Initio Calculations on Quasi-One-Dimensior	nal	
P	olymers	•	53
2.1.	Some Polymers Used for the Production of Plastics:		
	Polyethylene and Its Fluoro Derivatives		53
	2.1.1. The Energy-Band Structure of Polyethylene		53
	2.1.2. Band Structures of Fluorinated Polyethylenes		55
2.2.	Highly Conducting Polymers: $(CH)_x$, $(SN)_x$, TCNQ		
	and TTF Stacks		63

	2.2.1.	Hartree-Fock Calculations on cis- and trans-	
		Polyacetylenes (Polyenes)	63
	2.2.2.	The Energy-Band Structure of (SN),	69
	2.2.3.	Ab Initio Calculation of Infinite TCNO and	
		TTF Stacks	72
23	Period	ic Biopolymers: Homopolynucleotides and	
<i></i>	Homor	nolynentides	74
	2 3 1	Homopolynucleotides	74
	2.3.1.	Homopolynacicolides	81
Dafa	2.J.2.		01 Q/
KCIC	cinces .		04
3. Se	emiemp	irical Band-Structure Calculations	89
31	Semier	nnirical Crystal-Orbital Methods	80
J.1.	3 1 1	The Pariser-Parr-Ponle Crystal-Orbital Method	80
	212	Semiempirical All Valence Electron	09
	5.1.2.	Semiemphical All- valence Election	02
2.2	A	Crystal-Orbital Schemes	93
3.2.	Applic	ations to Highly Conducting Polymers and	07
	Biopol	ymers	97
	3.2.1.	Trans-Polyacetylene.	97
	3.2.2.	TCNQ and TTF Stacks.	99
	3.2.3.	Periodic DNA and Protein Models	103
Refe	rences .		106
4. T	he Treat	tment of Aperiodicity in Polymers	109
4.1.	Eleme	ntary Green Function Theory	109
	4.1.1.	Solution of Inhomogeneous Differential Equation	
		by Means of Green Functions	109
	412	Application of Green Functions to the Solution of	107
	1.1.4.	the Time-Independent Schrödinger Faustion	112
	413	Simple Derivation of the Dyson Equation	115
42	Demoi	nstration of the Effects of Aperiodicity on the	115
7.2.	Flectro	nstration of the Energy of Aperiodicity on the	116
	1 2 1	Effect of Side Chain Disorder on the Electronic	110
	4.4.1.	Structure of Proteins	117
	122	Lacolization of Ways Expections in a	11/
	4.2.2.	Disordered Hudroson Ding	125
4.2	0.1	Disordered Hydrogen King	125
4.3.	Single	Site Concrent Potential Approximation and its	1.20
	Applic	ation to $(SN)_x$ with Hydrogen Impurities	130
	4.3.1.	Derivation of the Single-Site CPA Equation	131
	4.3.2.	Application of the Single-Site CPA Method to $(SN)_x$	
		with Hydrogen Impurities.	135

4.4.	The Ne	egative Factor Counting (NFC) Technique and Its		
	Applica	ation to Aperiodic DNA and Proteins	•	140
	4.4.1.	The Negative Factor Counting Technique		
		in Its One Band (Simple Tight-Binding) Form		140
	4.4.2.	The NFC Method in Its Ab Initio (Matrix-Block)		
		Form		143
	4.4.3.	Application of the NFC Method to Aperiodic		
		Polypeptides and Polynucleotides		146
4.5.	Investi	gation of the Localization of the Orbitals in		
	Disord	ered Chains		162
	4.5.1.	Green Matrix Method for the Study of the		
		Localization Properties of the States Belonging		
		to a Disordered Chain		163
	4.5.2.	Application to a Model Hamiltonian		166
4.6.	Treatm	ient of a Cluster of Impurities Imbedded in a		
	Period	ic Chain		168
	4.6.1.	Green Matrix Formulation of the Problem		168
	4.6.2.	Application to a Hydrogen Impurity in a		
		Lithium Chain.		173
Refe	rences.		•	179
5. E	lectronic	Correlation in Polymers	•	183
5.1.	Constr	uction of Wannier Functions		184
5.2.	Second	I-Order Møller–Plesset Many-Body Perturbation		
	Theory	for Infinite Systems		191
5.3.	The El	ectronic Polaron Model and the Quasi-Particle Band	L	
	Structu	re of Polymers		199
5.4.	Selecte	d Correlation Energy Calculations on Polymers .		205
	5.4.1.	Ground-State Energy of an Infinite Metallic		
		Hydrogen Chain		205
	5.4.2.	The Quasi-Particle Energy Gap of Alternating		
		trans-Polyacetylene		207
	5.4.3.	Correlation Energy and Quasi-Particle Gap		
		in a Cytosine Stack		212
5.5.	Correla	ation in Polymers with Large Unit Cells		213
5.6.	Remar	ks on Correlation in Disordered Chains		223
Refe	rences .			228
6. ir	nteractio	n between Polymers	•	231
6.1.	Pertur	bation Theoretical Considerations		231
6.2.	The M	utually Consistent Field (MCF) Method		239

xi

Cor	nter	nts
-----	------	-----

	6.2.1. The MCF Method in the Point-Charge	
	Representation of the Potentials	240
	6.2.2. The MCF Method in the Pseudopolarization	
	Tensor Formulation	244
6.3.	Application to DNA-Protein Interactions	248
	6.3.1. Models for B-DNA and Polyglycine and Methods	
	of Calculation	250
	6.3.2. Results of B-DNA-Polygly Calculations and Their	250
Dafa		259
Rele		230
7. Tł	he Effect of Environment on the Band Structure of Polymers	263
7.1.	Generation of an Effective Potential Field of the	
	Environment	263
7.2.	Results for a Cytosine Stack	266
Refe	rences	267
II. TI P	HEORETICAL CALCULATION OF THE DIFFERENT HYSICAL PROPERTIES OF POLYMERS	
8. E	xcited and Ionized States of Polymers	271
8.1.	Intermediate Exciton Theory with Correlation	271
8.2.	Application of Intermediate Exciton Theory to UV Spectra	
	of Different Polymers	278
	8.2.1. Applications to Polydiacetylenes and to	
	Polyethylenes	278
	8.2.2. Applications to a Cytosine Stack and to	
	Polyglycine	281
	8.2.3. The Exciton Spectrum of Polyglycine and	202
83	Ionized States of Polymers and Their X-Ray Photoelectron	203
0.5.	Spectra	286
	8.3.1. Theoretical Calculation of the Ionized	200
	States of Simple Periodic Polymer Chains	286
	8.3.2. Interpretation of the Photoelectron Spectra	
	of Polymers	288
Refe	erences	291
9. V	ibrational Spectra and Transport Properties of Polymers.	295
9.1	Methods for the Calculation of Vibrational Spectra of	
280	Polymers	295

9.2.	Phonon Calculations for Selected Ordered and Disordered	200
	Polymer Chains	300
	9.2.1. Polymethineimine	300
	9.2.2. Polyethylene	303
	9.2.3. Bent Chain of Hydrogen Fluoride Molecules	304
	9.2.4. Periodic and Nonperiodic Alternating	
	trans-Polyacetylene	311
9.3.	Transport Properties of Polymers	323
	9.3.1. The Theory of Bloch-Type Electric Conduction	
	in Polymers and Its Applications	325
	9.3.2. Calculation of Bloch Conduction for	
	Narrow-Band Polymers.	337
	9.3.3. Theory of Hopping Conduction in Very Narrow	
	Band Polymers and in Disordered Polymers with	
	Applications	346
Refe	rences	354
10. 1	Magnetic, Electrical, and Mechanical Properties of Polymers	359
10.1.	. Hartree–Fock Equations for Periodic Polymer Chains	
	in a Magnetic Field	359
	10.1.1. Static Magnetic Field	359
	10.1.2. Some General Remarks about the Theory of the	
	Effects of Magnetic Fields on Polymers	368
10.2	. Electric Polarizabilities of Polymers	369
	10.2.1. Theoretical Methods	369
	10.2.2. Numerical Applications.	372
10.3	. Mechanical Properties of Polymers	374
	10.3.1. Theoretical Considerations	374
	10.3.2. Application to Polyethylene	376
Refe	erences	379
11.	The Possible Role of Solid-State Physical Properties of	
	Biopolymers in Their Biological Functions	381
11.1	. Mutation and Aging	381
	11.1.1. Theory of Point Mutation	381
	11.1.2. Remarks about Aging	388
11.2	2. Carcinogenesis Caused by Chemicals and Different	
	Radiations	389
	11.2.1. Different Biochemical Mechanisms of	
	Oncogene Activation through	
	Chemical Carcinogens	389

Content	s
---------	---

11.2.2.	Dif	fere	nt	Lo	ng	-Ra	ang	ge I	Phy	sic	al	Me	ech	ani	sm	S			
	of	Caro	cino	oge	n	Bir	ndi	ng	to	D	NA	•							394
11.2.3.	Re	mar	ks (on	th	e E	Effe	ct	of	U١	a	nd	Pa	rtic	ele				
	Ra	diat	ion	ar	nd	the	e In	niti	ati	on	of	Ca	ırci	no	gen	esi	s.		403
References	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	404
Index			•	•	•			•	•				•		•	•		•	407