POWER ELECTRONICS: Converters, Applications, and Design

NED MOHAN

Department of Electrical Engineering University of Minnesota Minneapolis, Minnesota

TORE M. UNDELAND

Department of Electrical Engineering and Computer Science Norwegian Institute of Technology Trondheim, Norway

WILLIAM P. ROBBINS

Department of Electrical Engineering University of Minnesota Minneapolis, Minnesota

JOHN WILEY & SONS New York Chichester Brisbane Toronto Singapore

CONTENTS

PART 1 INTRODUCTION

Chapter 1 Power Electronic Systems

1-1	Introduction	3
1-2	Scope and Applications of Power Electronics	5
1-3	Classification of Power Electronic Converters	5
1-4	About the Text	5

Chapter 2 Overview of Power Semiconductor Switches

2-1	Introduction	7
2-2	Diodes	8
2-3	Thyristors	9
2-4	Desired Characteristics in Controllable Switches	11
2-5	Bipolar Junction Transistors (BJTs) and Monolithic Darlingtons (MDs)	15
2-6	Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs)	16
2-7	Gate-Turn-Off Thyristors (GTOs)	17
2-8	Insulated Gate Bipolar Transistors (IGBTs)	19
2-9	Comparison of Controllable Switches	19
2-10	Drive and Snubber Circuits	20
2-11	Justification for Using Idealized Device Characteristics	20
2-12	Summary	21
2-13	References	22

PART 2 GENERIC POWER ELECTRONIC CONVERTERS

Chapter 3 Line-Frequency Diode Rectifiers: 60 Hz ac \rightarrow Uncontrolled dc

3-1	Introduction	25
3-2	Basic Rectifier Concepts	26
3-3	Single-Phase Diode Bridge Rectifiers	27
3-4	Voltage Doubler (Single-Phase) Rectifiers	33
3-5	Three-Phase Full-Bridge Rectifiers	33
3-6	Comparison of Single-Phase and Three-Phase Rectifiers	38
3-7	Inrush Current and Overvoltages at Turn-On	38
3-8	Concerns and Remedies for Input-Current Harmonics	
	and Poor Power Factor	39
3-9	Summary	39
3-10	References	40

Chapter 4 Line-Frequency Phase-Controlled Rectifiers and Inverters: 60 Hz ac ⇔ Controlled dc

4-1	Introduction	41
4-2	Control of Line-Frequency Controlled Rectifiers and Inverters	42
4-3	Three-Phase Converter Analysis with $L_s = 0$	45
4-4	Effect of AC-Side Inductance L_s	47
4-5	Effect of Discontinuous Current	51
4-6	Inverter Operation	51
4-7	AC-Side Waveforms	55
4-8	Other Three-Phase Converters	61
4-9	Summary	61
4-10	References	62

Chapter 5 DC-to-DC Switch-Mode Converters

5-1	Introduction	63
5-2	Control of dc-dc Converters	64
5-3	Step-Down (Buck) Converter	66
5-4	Step-Up (Boost) Converter	75
5-5	Buck-Boost Converter	81
5-6	Cúk dc–dc Converter	87
5-7	Full-Bridge dc-dc Converter	91
5-8	DC-DC Converter Comparison	98
5-9	Summary	100
5-10	References	101

Chapter 6 Switch-Mode DC-to-AC Inverters: dc ⇔ Sinusoidal ac

6-1	Introduction	102
6-2	Basic Concepts of Switch-Mode Inverters	104

CONTENTS

6-3	Single-Phase Inverters	114
6-4	Three-Phase Inverters	129
6-5	Effect of Blanking Time on Output Voltage in PWM Inverters	141
6-6	Other Inverter Switching Schemes	144
6-7	Rectifier Mode of Operation	148
6-8	Summary	150
6-9	References	152

Chapter 7 Resonant Converters: Zero-Voltage and / or Zero-Current Switchings

7-1	Introduction	154
7-2	Classification of Resonant Converters	156
7-3	Basic Resonant Circuit Concepts	158
7-4	Load-Resonant Converters	163
7-5	Resonant-Switch Converters	179
7-6	Zero-Voltage-Switching, Clamped-Voltage (ZVS-CV) Topologies	186
7-7	Resonant DC-Link Inverters with Zero-Voltage Switchings	193
7-8	High Frequency Link Integral-Half-Cycle Converters	195
7-9	Summary	197
7-10	References	200

PART 3 POWER SUPPLY APPLICATIONS

Chapter 8 Switching DC Power Supplies

8-1	Introduction	207
8-2	Linear Power Supplies	207
8-3	Overview of Switching Power Supplies	209
8-4	DC-DC Converters with Electrical Isolation	211
8-5	Control of Switch-Mode DC Power Supplies	229
8-6	Power Supply Protection	249
8-7	Electrical Isolation in the Feedback Loop	252
8-8	Designing to Meet the Power Supply Specifications	255
8-9	Summary	257
8-10	References	260

Chapter 9 Power Conditioners and Uninterruptible Power Supplies

9-1	Introduction	262
9-2	Power Line Disturbances	262
9-3	Power Conditioners	265
9-4	Uninterruptible Power Supplies (UPS)	266
9-5	Summary	271
9-6	References	272

xiii

PART 4 MOTOR DRIVE APPLICATIONS

Chapter 10 Introduction to Motor Drives

10-1	Introduction	275
10-2	Criteria for Selecting Drive Components	277
10-3	Summary	284
10-4	References	285

Chapter 11 DC-Motor Drives

11-1	Introduction	286
11-2	Equivalent Circuit of DC Motors	286
11-3	Permanent-Magnet DC Motors	289
11-4	DC Motors with a Separately Excited Field Winding	290
11-5	Effect of Armature Current Waveform	292
11-6	DC Servo Drives	292
11-7	Adjustable-Speed DC Drives	301
11-8	Summary	306
11-9	References	308

Chapter 12 Induction Motor Drives

12-1 Introduction	309
12-2 Basic Principles of Induction Motor Operation	310
12-3 Induction Motor Characteristics at Rated (Line) Frequency	
and Rated Voltage	315
12-4 Speed Control By Varying Stator Frequency and Voltage	317
12-5 Impact of Nonsinusoidal Excitation on Induction Motors	326
12-6 Variable-Frequency Converter Classifications	329
12-7 Variable-Frequency PWM-VSI Drives	330
12-8 Variable-Frequency Square-Wave-VSI Drives	336
12-9 Variable-Frequency Current-Source Inverter (CSI) Drives	338
12-10 Comparison of Variable Frequency Drives	339
12-11 Line-Frequency Variable-Voltage Drives	339
12-12 Reduced Voltage Starting ("Soft Start") of Induction Motors	342
12-13 Speed Control by Static Slip-Power Recovery	342
12-14 Summary	343
12-15 References	346

Chapter 13 Synchronous-Motor Drives

13-1	Introduction	347
13-2	Basic Principles of Synchronous Motor Operation	347
13-3	Synchronous Servomotor Drives with Sinusoidal Waveforms	351
13-4	Synchronous Motor Drives with Trapezoidal Waveforms	353

CONTENTS

13-5	Load-Commutated-Inverter (LCI) Drives	354
13-6	Cycloconverters	358
13-7	Summary	358
13-8	References	359

Chapter 14 Step-Motor Drives

14-1	Introduction	361
14-2	Variable-Reluctance Step Motors	361
14-3	Permanent-Magnet Step-Motors	363
14-4	Hybrid Step-Motors	364
14-5	Modes of Excitation in Step-Motors	366
14-6	Drive Circuits for Step-Motors	370
14-7	Open-Loop Operation of Step-Motors	372
14-8	Closed-Loop Control of Step-Motors	373
14-9	Switched-Reluctance Motor Drives	373
14-10	Summary	373
14-11	References	374

PART 5 OTHER APPLICATIONS

Chapter 15 Residential and Industrial Applications

15-1	Introduction	377
15-2	Residential Applications	377
15-3	Industrial Applications	381
15-4	Summary	385
15-5	References	385

Chapter 16 Electric Utility Applications

16-1	Introduction	386
16-2	High-Voltage DC (HVDC) Transmission	386
16-3	Static Var Control (SVC)	397
16-4	Interconnection of Renewable Energy Sources and Energy Storage	402
16-5	Summary	406
16-6	References	407

Chapter 17 Optimizing the Utility Interface with Power Electronic System

17-1	Introduction	409
17-2	Generation of Current Harmonics	410
17-3	Current Harmonics and Power Factor	411
17-4	Harmonic Standards and Recommend Practices	411

xv

17-5	Need for Improved Utility Interface	414
17-6	Improved Single-Phase Utility Interface	414
17-7	Improved Three-Phase Utility Interface	425
17-8	Electromagnetic Interference (EMI)	427
17-9	Summary	429
17-10	References	430

PART 6 SEMICONDUCTOR DEVICES AND CONVERTER DESIGN

Chapter 18 Basic Semiconductor Physics

18-1	Introduction	435
18-2	Conduction Processes in Semiconductors	436
18-3	PN Junctions	442
18-4	Charge Control Description of PN Junction Operation	446
18-5	Impact Ionization	448
18-6	Summary	449
18-7	References	450

Chapter 19 Power Diodes

451
453
459
462
467
470
478
479

Chapter 20 BJTs with Drive and Snubber Circuits

20-1	Introduction	480
20-2	Vertical Power Transistor Structures	480
20-3	I-V Characteristics	482
20-4	Physics of BJT Operation	484
20-5	Switching Characteristics	490
20-6	Breakdown Voltages	497
20-7	Second Breakdown	498
20-8	On-State Losses	500
20-9	Safe Operating Areas	501
20-10	Design of Drive Circuits for BJTs	503
20-11	Snubber Circuits for BJTs and Darlingtons	520
20-12	Summary	532
20-13	References	534

Chapter 21 Power MOSFETs

21-1	Introduction	535
21-2	Basic Structure	535
21-3	I-V Characteristics	538
21-4	Physics of Device Operation	540
21-5	Switching Characteristics	545
21-6	Operating Limitations and Safe Operating Areas	550
21-7	Design of Gate Drive Circuits	559
21-8	Snubber Circuits	565
21-9	Summary	566
21-10) References	567

Chapter 22 Thyristors

22-1	Introduction	568
22-2	Basic Structure	568
22-3	I-V Characteristics	570
22-4	Physics of Device Operation	571
22-5	Switching Characteristics	575
22-6	Methods of Improving dI/dt and dV/dt Ratings	581
22-7	Thyristor Gating Circuits	583
22-8	Snubber Circuits for Thyristors	587
22-9	Summary	590
22-10	References	592

Chapter 23 Gate Turn-Off Thyristors

23-1	Introduction	593
23-2	Basic Structure and I-V Characteristics	593
23-3	Physics of Turn-Off Operation	595
23-4	GTO Switching Characteristics	597
23-5	Snubber Circuits	603
23-6	Overcurrent Protection of GTOs	604
23-7	Summary	605
23-8	References	606

Chapter 24 Insulated Gate Bipolar Transistors

24-1	Introduction	607
24-2	Basic Structure	607
24-3	I-V Characteristics	610
24-4	Physics of Device Operation	610
24-5	Latchup in IGBTs	613
24-6	Switching Characteristics	615
24-7	Device Limits and Safe Operating Areas	618
24-8	Drive and Snubber Circuits	619
24-9	Summary	620
24-10	References	621

Chapter 25 Emerging Devices and Circuits

:	25-1	Introduction	622
-	25-2	Power Junction Field Effect Transistors	622
2	25-3	Field-Controlled Thyristor	627
2	25-4	JFET-Based Devices Versus Other Power Devices	630
1	25-5	MOS-Controlled Thyristors	630
-	25-6	High Voltage Integrated Circuits	632
2	25-7	New Semiconductor Materials	636
5	25-8	Summary	637
	25-9	References	638

Chapter 26 Passive Components and Practical Converter Design Considerations

26-1	Introduction	639
26-2	Design of Inductors	639
26-3	Transformer Design	646
26-4	Selection of Capacitors	650
26-5	Resistors	651
26-6	Current Measurements	651
26-7	Heat sinking	653
26-8	Circuit Layout	654
26-9	Summary	655
26-10	References	656

Index

657