Chemistry and Light

Paul Suppan

Professor of Physical Chemistry, University of Fribourg, Switzerland

Contents

8

Chapter 1	Introduction	1
1.1	Light-induced Processes in Everyday Life	1
	1.1.1 Photodegradation Processes: The 'Negative'	
	Actions of Light	2
	1.1.2 Imaging Processes	3
1.2	General Features of Photochemical and	
	Photophysical Processes	3
	1.2.1 The Pathways of 'Dark' Reactions and	
	Photochemical Reactions	4
	1.2.2 The Mistaken Concept of 'Catalysis' by Light	5
	1.2.3 The Range of Photochemical Reactions:	
	Vibrational Photochemistry and Radiation	
	Chemistry	6
	1.2.4 Chemical Effects of Ionizing Radiation	8
Chapter 2	Light and Matter	11
2.1	Electromagnetic Radiation	11
2.1	2.1.1 Energy, Frequency, Wavelength and Velocity	11
	of Electromagnetic Radiation	12
	2.1.2 The Photoelectric Effect	12
	2.1.2 The Photoelectric Elect	13
	2.1.4 Photon Mass, Photon Spin and Momenta	14
2.2	Matter: Molecules and Atoms, Nuclei and Electrons	15
2.2	2.2.1 The Planetary Model of the Atom: Orbits and	10
	Orbitals	16
		10
	2.2.2 Wavefunctions and Operators: The Schrödinger Equation	17
	2.2.3 The Principle of Exclusion and The	17
	Uncertainty Principle	20
2.3		20
2.3	2.3.1 Transition Moments	22
		23 24
	2.3.2 Electro-optical Phenomena	24
Chapter 3	The Energy of Light: Excited Molecules	27
3.1	Orbitals and States	27
	3.1.1 Excited States of Atoms and Atomic Spectra	27
	3.1.2 Atomic Absorption and Emission Spectra	28

	3.1.3 Real Atomic Spectra: Broadening of	
	Absorption and Emission Lines	30
3.2	Excited States of Molecules	30
	3.2.1 Diatomic Molecules	30
	3.2.2 Polyatomic Molecules	40
	3.2.3 Linear Conjugated Molecules: The Polyenes	42
	3.2.4 Cyclic Conjugated Systems: Aromatic	
	Molecules	43
3.3	Charge Transfer in Excited States; 'TICT' States	46
	3.3.1 Charge Transfer States in Organic Molecules	47
	3.3.2 Twisted Intramolecular Charge Transfer	
	States	49
3.4	Transitions Between Energy States	49
	3.4.1 Thermal Population of Electronically Excited	
	States	51
	3.4.2 Radiative Transitions	51
	3.4.3 Non-radiative Transitions	62
3.5	Quenching of Excited States	65
	3.5.1 Energy Transfer	66
	3.5.2 Quenching by Electron Transfer	68
	3.5.3 The Heavy Atom Effect	68
	3.5.4 Paramagnetic Quenching	69
	3.5.5 Concentration Quenching	70
	3.5.6 Static and Dynamic Quenching	70
3.6	Energy Levels in Solids	73
	3.6.1 Fermi Levels; Doped Semiconductors	74
3.7	The Physical Properties of Excited Molecules	74
	3.7.1 Geometrical Changes in Excited States	75
	3.7.2 Electron Distributions and Polarizabilities	76
3.8	The Effect of the Environment on the Energy States	
	of Molecules	77
	3.8.1 Non-specific Electrostatic Interactions	77
	3.8.2 Specific Solute–Solvent Associations	79
	3.8.3 Solvatochromic and Thermochromic Shifts	79
	3.8.4 Ion Solvation: The Born Equation	84
Chapter 4	The Chemistry of Excited Molecules	87
4.1	'Dark' Chemistry and Light-induced Chemistry	87
	4.1.1 Pathways of Dark and Light-induced	
	Chemical Reactions	88
	4.1.2 Adiabatic and Non-adiabatic Processes: the	
	Role of the Energy of Excited States	89
	4.1.3 Is There a Temperature Effect in	00
	Photochemical Reactions?	91
	4.1.4 Monophotonic and Multiphotonic Processes	91

Contents

Est.

111

	4.1.5 Primary and Secondary Photochemical	
	Processes	92
	4.1.6 Kinetics of Photochemical Reactions	94
4.2		
	and Electron Transfer Reactions	95
	4.2.1 Intramolecular and Intermolecular Electron	
	Transfer	97
	4.2.2 The 'Marcus-Hush' Model of Electron	
	Transfer	101
4.3	Electronically Excited Super Molecules: Excimers	
	and Exciplexes	104
4.4	Organic Photochemistry	110
	4.4.1 The Mechanisms of Photochemical Reactions:	
	Quenching, Sensitization and Wavelength	
	Effects	111
	4.4.2 Unimolecular Reactions	113
	4.4.3 Protolytic Equilibria (Acid-Base Reactions)	126
	4.4.4 Bimolecular Reactions	130
4.5	Photoelectrochemistry	140
	4.5.1 Reactions at Electronically Excited	
	Semiconductor Electrodes	141
4.6	Inorganic Photochemistry	142
	4.6.1 Excited Atom Reactions	143
	4.6.2 Photoinduced Redox Reactions of Ions in	
	Solution	143
	4.6.3 Photophysics and Photochemistry of Metal	
	Complexes	144
4.7	•	151
	4.7.1 Types of Solids	152
	4.7.2 Photochemical Reactions in Glasses	152
	4.7.3 Excitons in Polymers and Crystals	153
	4.7.4 Bimolecular Photochemical Reactions in	
	Solids	153
	4.7.5 Photochemistry in Micelles	154
4.8	Chemiluminescence	155
	4.8.1 Electroluminescence	155
	4.8.2 Chemiluminescence Sensitized by the	
	Decomposition of Cyclic Peroxides	156
	4.8.3 Chemiluminescence of Free Radical Reactions	157
4.9	Reactions of Free Radicals	157
	4.9.1 Resonance Stabilization of Free Radicals	158
	4.9.2 The Reactions of Free Radicals	159
	4.9.3 Magnetic Field Effects in Free Radical	
	Reactions	159
	4.9.4 Excited States of Free Radicals	160
	4.9.5 Photochemical Reactions of Free Radicals	160

xi

Chapter	5 Light and Life	163
5.	8	164
5.		165
5.		100
5.		175
5.	-	176
0.	5.5.1 Photochemistry of Nucleic Acids	177
	5.5.2 Photochemistry of Proteins	180
5.	·	181
	7 Photomedicine	181
5.	5.7.1 The Repair of Detached Retinas by Laser	101
	Welding	182
	5.7.2 Photochemical Effects of VIS and UV Light	182
5.		184
5.	5.8.1 The Role of Bioluminescence; Its Origins in	101
	Evolution	184
	Lyonation	101
C1		100
Chapter (186
6.	01	186
	6.1.1 Spectral Sensitization	188
	6.1.2 Colour Photography	190
	6.1.3 'Instant' Photography	191
	6.1.4 Electrophotography: The Photocopying	
	Process	192
6.	1 /	
	Degradation of Polymers	193
	6.2.1 Photochemical Curing of Surface Coatings	195
	6.2.2 Chemical Structures of Polymers	195
	6.2.3 Photoinitiation of Polymerization	197
	6.2.4 Photodegradation of Polymers and Protection	
	Methods	198
6.		201
	6.3.1 Photochlorination of Polymers	202
	6.3.2 The Synthesis of Caprolactam	202
	6.3.3 The Syntheses of Vitamin D and of 'Rose	
	Oxide'	203
	6.3.4 Photochemical Reactors	204
6.	, , , ,	205
6.		207
6.	6,	209
	6.6.1 Photoelectrochemical Cells	210
6.	1	211
	6.7.1 The Ozone Layer; Its Photochemical	
	Formation and Degradation Processes	213
	6.7.9 Time Dependence of Pollutant Concentrations	- 214

xii

Contents

Chapter	• 7	Experimental Techniques	216
	7.1	Light Sources, Filters and Monochromators	216
		7.1.1 Sunlight, the First Light Source	216
		7.1.2 Incandescent Lamps and Arc Lamps	217
		7.1.3 Some Other Light Sources	218
		7.1.4 Optical Filters	220
		87.1.5 Spectrographs and Monochromators	222
	7.2	Lasers	225
		7.2.1 General Principles; Two-, Three- and	
		Four-level Lasers	225
		7.2.2 Solid State Lasers: Ruby and Nd/YAG	226
		7.2.3 Frequency Conversion of Laser Light	228
		7.2.4 Gas Lasers	230
		7.2.5 Dye Lasers	231
		7.2.6 The Properties of Laser Light	232
		7.2.7 'Self-phase' Modulation: White Light from	
		Monochromatic Lasers	233
	7.3	Luminescence Measurements	233
		7.3.1 Photoluminescence	234
		7.3.2 Electroluminescence	234
		7.3.3 Chemiluminescence and Bioluminescence	235
		7.3.4 Correction of Emission and Excitation Spectra	235
		7.3.5 Light Detectors	236
		7.3.6 Single Photon Counting	239
		7.3.7 Experimental Conditions for Luminescence	
		Measurements	240
		7.3.8 Luminescence Quantum Yield Measurements	241
e va eg	7.4	Flash Photolysis	242
		7.4.1 'Conventional' (Microsecond) Flash Photolysis	242
		7.4.2 Nanosecond Laser Flash Photolysis	244
		7.4.3 Luminescence Kinetics; Deconvolution	246
		7.4.4 Time-resolved Spectroscopy	248
		7.4.5 Special Detection Techniques in Flash	
		Photolysis: Photoconductivity, Thermal	
		Lensing, Photoacoustics, etc.	250
ALC: N	7.5	Quantum Yields of Photochemical Reactions:	
		Actinometry	253
		7.5.1 Types of Actinometers	254
	_		
Chapter		The Frontiers of Photochemistry	256
Pilipine i	8.1	Picosecond Flash Photolysis	257
12.25		8.1.1 Spectrographic Picosecond Laser Flash	
Cash		Photolysis	257
Max 1		8.1.2 Kinetic Picosecond Laser Flash Photolysis	258
1		8.1.3 Sampling Techniques for Repetitive Events	258

xiii

Contents	Co	nte	nts
----------	----	-----	-----

	8.1.4 Indirect Optical Methods: Autocorrelation	
	and Up-conversion	259
	8.1.5 Picosecond Light-induced Processes	260
8.	2 Femtosecond Flash Photolysis	263
	8.2.1 Femtosecond Detection Methods	264
	8.2.2 Femtosecond Photochemical Processes	266
8.3	3 Supramolecular Photochemistry	268
8.4	4 Photochemistry in Molecular Films	271
8.	5 Photochemistry in Molecular Beams	274
	8.5.1 Molecular Beam Photoinduced Reactions	276
8.0	6 Vibrational Photochemistry with Infrared Light	278
8.	7 Spectral Hole Burning	280
Appendic	es	283
 2A		283
3A	A Relationships Between Emission Rate Constants	
	and Absorption Coefficients	284
31	B Bandgap Energies of Some Semiconductors	285
7 <i>A</i>	Polarizability and Hyperpolarizability	286
7 I	B Signal-to-noise Ratio	287
70	2 Procedures of Deoxygenation	288
Further R	eading	289
Subject II	ıdex	292

Subject Index

xiv