Self-Tuning Control for Two-Dimensional Processes

W. P. Heath

Control Systems Centre, UMIST, UK

RESEARCH STUDIES PRESS LTD.

Taunton, Somerset, England

JOHN WILEY & SONS INC.

New York \cdot Chichester \cdot Toronto \cdot Brisbane \cdot Singapore

Contents

List	of theorems	xi
List	of algorithms	xii
List	of tables	xii
List	of figures	xi
Selec	ctive glossary of abbreviations and symbols	xx
In	troduction	1
	1.1 Background	1
	1.2 Applications	4
	1.3 Structure of the monograph	6
	1.4 Contribution	7
2 P	rediction and control over the semi-infinite plane	9
	2.1 The two-dimensional control problem	9
	2.2 Some results from two-dimensional systems theory	11
	2.2.1 Transforming from quarter-plane to non-symmetric half-plane	
	causal processes	12
	2.2.2 Zeros and coprimeness	13
	2.2.3 Stability	14
	2.2.4 Autocovariance of an ARMA process	15
	2.2.5 The solution of two-dimensional Diophantine equations	17
	2.3 Pole-assignment control	19
	2.4 Prediction	21
	2.4.1 The two-dimensional prediction problem	21
	2.4.2 A closed form for the least squares predictor	25
	2.4.3 An algebraic interpretation	26
	2.5 Minimum variance and generalised minimum variance control	28
	2.5.1 Minimum variance control	28

2.5.2 Generalised minimum variance control	30
3 Prediction and control over the plane of finite width	32
3.1 Prediction and control for case with edges	32
3.1.1 The process	32
3.1.2 Prediction and minimum variance control	34
3.1.3 The relationship with the case with no edges	37
3.1.4 Generalised minimum variance control	39
3.2 Simulations	40
3.3 The Multivariable Connection	43
3.3.1 The process	43
3.3.2 Prediction	47
3.3.3 Minimum variance control	50
3.3.4 Generalised minimum variance control	51
3.3.5 The link with the case without edges	54
3.3.6 Reprise	56
3.3.7 Other models for behaviour at the edges	59
3.4 Other causality structures	61
3.4.1 The process	61
3.4.2 Model responses to step inputs	63
3.4.3 Control—an informal approach	70
3.4.4 A simulation example	74
3.4.5 Control—a more formal approach	75
4 Parameter estimation	83
4.1 Least squares estimation in two dimensions	83
4.1.1 AR processes	83
4.1.2 The extension to ARMA data	87
4.2 Forgetting strategies	88
4.3 Two-dimensional forgetting with $0 < \lambda < 1$	92
4.3.1 An 'Attasi's model' form for two-dimensional forgetting	92
4.3.2 A 'Roesser's model' form for two-dimensional forgetting	96
4.4 Two-dimensional forgetting in factored form	102
4.5 Row and column forgetting	110
4.5.1 Row forgetting	110

4.5.2 Column forgetting—the basic algorithm	112
4.5.3 Column forgetting—modifications	113
4.6 Simulations	116
5 Self-tuning control	136
5.1 Self-tuning GMV in two dimensions	137
5.1.1 An explicit self-tuning controller	137
5.1.2 Implicit self-tuning control	144
5.1.3 Self-tuning control for different edge conditions	146
5.2 Setpoint tracking	149
5.2.1 Tracking without edges	149
5.2.2 Tracking column by column	151
5.2.3 Integral control	153
5.3 Offset handling	158
5.3.1 The incremental model	159
5.3.2 The static model	162
Conclusion	170
Appendix 1. Proof of the theorems	174
Appendix 2. Algorithm 2.4.1	198
Appendix 3. Multivariable self-tuning control	201
A3.1 The process	201
A3.2 Prediction	201
A3.3 Minimum variance control	202
A3.4 Generalised minimum variance control	202
Appendix 4. Simulation results for §4.6	204

229

235

References

Index