Heinrich Stolz

Time-Resolved Light Scattering from Excitons

With 87 Figures

Springer-Verlag Berlin Heidelberg NewYork London Paris Tokyo Hong Kong Barcelona Budapest Dr. Heinrich Stolz

Fachbereich Physik Universität-Gesamthochschule Paderborn Warburger Straße 100 D-33093 Paderborn

Physics and Astronomy Classification Scheme (PACS): 42.50.Md; 78.47.+p; 71.35.+z

ISBN 3-540-57946-X Springer-Verlag Berlin Heidelberg New York ISBN 0-387-57946-X Springer-Verlag New York Berlin Heidelberg

CIP-data applied for.

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1994 Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Typesetting: Camera ready copy from the authors using a Springer T_EX makro package Production Editor: P. Treiber SPIN: 10123321 56/3140 - 5 4 3 2 1 0 - Printed on acid-free paper

Table of Contents

1	Intr	oduction	1						
	1.1	The Elementary Light Scattering Process							
	1.2	Light Scattering from Excitons: A Historical Overview	4						
	1.3	Survey of the Book	5						
2	Tin	me–Resolved Spectroscopy							
	2.1	Basic Considerations	7						
		2.1.1 The Definition of a Time-Resolved Spectrum	7						
		2.1.2 The Basic Measurement Setup	10						
		2.1.3 Transform-Limited Spectral Filters	15						
	2.2	Model Calculations for a Lorentz Oscillator	18						
		2.2.1 Time-Resolved Spectrum with Fabry Perot Etalon	19						
		2.2.2 Time-Resolved Spectrum with Slit Function	20						
		2.2.3 Time-Resolved Spectrum with Sampling Gate	21						
	2.3	Possible Experimental Realizations of Spectral Filters	22						
		2.3.1 The Fabry Perot Etalon	22						
		2.3.2 Grating Monochromators	23						
3	Exp	xperimental Setup for Transform-Limited Spectroscopy							
	3.1	General Outline							
	3.2	Generation of Laser Pulses	33						
		3.2.1 Pump Laser	33						
		3.2.2 Dye Laser	34						
		3.2.3 Laser Pulse Diagnostics	35						
		3.2.4 Typical Parameters	37						
	3.3	The Spectral Filter							
	3.4	Light Detectors	39						
		3.4.1 Streak Cameras	39						
		3.4.2 Single Photon Counting with Photomultipliers	40						
		3.4.3 Constant Fraction Discriminators	41						
	3.5	Transform-Limited Properties of the Setup							
	3.6	Scattering Geometries	44						

x Table of Contents

4	Exciton States in Semiconductors						
	4.1	Excite	ons in Three Dimensions				
		4.1.1	Exciton States in Second Quantization				
		4.1.2	Degenerate States				
	4.2	Dyna	mics of Excitons				
		4.2.1	Commutation Relations				
		4.2.2	Exciton-Photon Interactions				
		4.2.3	Direct Excitons: Polaritons				
		4.2.4	Indirect Excitons				
	4.3	Excite	ons in Quantum Well Structures				
		4.3.1	Band Structure of III-V Compounds				
		4.3.2	Exciton States				
	4.4	Relax	ation Processes of Excitons				
		4.4.1	Exciton-Phonon Interactions				
		4.4.2	Energy Relaxation Times of Excitons				
		4.4.3	Exciton-Polariton Scattering				
		4.4.4	Relaxation Processes of Two-Dimensional Excitons 66				
5	Dvn	amics o	of Light Scattering from Exciton States				
	5.1		cal Description of Resonant Rayleigh Scattering 72				
		5.1.1	The Scattered Fields				
		5.1.2	Monochromatic Excitation				
		5.1.3	Pulsed Excitation: Spectrally Integrated Intensity 77				
		5.1.4	Two-Dimensional Systems				
	5.2		omenological Description by Density Matrix Theory 85				
	• • =	5.2.1	The Density Matrix and Relaxation Processes 86				
		5.2.2	Interaction with the Light Field				
		5.2.3	Broad-Band Excitation and Detection				
		5.2.4	Generalization for Arbitrary Light Polarization 92				
		5.2.5	The Case of a Degenerate Ground State				
		5.2.6	Rayleigh and Raman Scattering				
	5.3		tum Theory of Transform–Limited Light Scattering 98				
	0.0	5.3.1	Outline of the Theory				
		5.3.2	Calculation of the Time-Resolved Spectrum 101				
		5.3.3	Feynman Diagrams				
		5.3.4	Coherent and Incoherent Scattering Contributions 105				
		5.3.5	Model Calculations				
e	F	ton D-	namics in Silver Bromide				
6							
	6.1 Introductory Remarks						
	0.2		States 115 Band Structure 115				
		6.2.1 6.2.2					
		6.2.3	The $\Gamma_6^+ \otimes L_{4,5}^-$ Exciton				

99

Table of Contents

	•
x	1
	•

	6.3	Matrix Elements of the Indirect Transition	127
		6.3.1 Transition Moments: No Spin–Orbit Interaction	128
			129
	6.4		132
		6.4.1 Experimental Results	133
			136
		6.4.3 Transform-Limited Theory	138
	6.5	Exciton-Phonon Relaxation Processes	143
7	Rese	onant Light Scattering of Exciton-Polaritons in Cuprous Oxide	150
	7.1	Properties of Excitons in Cu ₂ O	150
		7.1.1 Band Structure and Exciton States	150
			152
			152
	7.2		154
			155
			155
	7.3		157
		7.3.1 Experimental Results	157
		7.3.2 Quantum Beats and the Time-Resolved Hanle Effect	159
		•	160
		7.3.4 Temperature Dependence: Polariton-Phonon Scattering	165
8	Tim	e–Resolved Resonant Rayleigh Scattering	167
	8.1	Excitons in Zinc-Blende-Type Semiconductors	
		8.1.1 States and Their Dynamics	
		8.1.2 Disorder in Quantum Well Structures	
	8.2		171
	8.3		172
	••••	•	172
			175
	8.4		177
	0.1	•	177
		8.4.2 Energy and Temperature Dependence of Relaxation	
			182
9	Outl	ook	191
0	9.1	Further Investigations	
	0.1		191
		•	193
	9.2		196
Re	ferene	ces	199
Su	bject	Index	207

_