CIRCUIT SIMULATION METHODS and ALGORITHMS

Jan Ogrodzki

CRC Press Boca Raton Ann Arbor London Tokyo

Table of Contents

Chapter 1 Introductory Topics in Circuit Simulation

1.1	Main concepts 1
	1.1.1 Systems, models, circuits, equations and responses 1
	1.1.2 Direct current, transient and alternating current responses . 4
1.2	Principles of circuit characterization
	1.2.1 Circuit branches
	1.2.2 Circuit topology
	1.2.3 Canonical equations and structural identity 19
1.3	Circuit equations
	1.3.1 Transformation of circuit variables
	1.3.2 Transformation of canonical circuit equations
	1.3.3 Nodal equations
	1.3.4 Modified nodal equations
Refe	rences

Chapter 2 Numerical Analysis of Linear Circuits

2.1	Formulation of algebraical circuit equations	29
	2.1.1 General characterization of linear circuits	29
	2.1.2 Nodal Equations	31
	2.1.3 Modified nodal equations	34
	2.1.4 Two-graph modified nodal equations	44
	2.1.5 Tableau equations	53
2.2	Frequency domain a.c. circuit analysis	61
	2.2.1 A.c. analysis of linear circuits	61
	2.2.2 Small-signal frequency analysis of nonlinear circuits	72
Refe	erences	84

Chapter 3 Numerical Solution of Linear Algebraic Equations

3.1	Introduction to simultaneous linear algebraic equations	85
	3.1.1 Solvability of sets of linear equations	86
	3.1.2 Ill-conditioned systems	87

3.2	Finite methods of solving linear algebraic equations	92
	3.2.1 Gaussian elimination	93
	3.2.2 LU factorization methods	98
	3.2.3 Numerical difficulties in the LU method	109
3.3	Sparse matrix technique	119
	3.3.1 Introductory notes on sparse matrix techniques	119
	3.3.2 Data-structures for sparse matrix techniques	121
	3.3.3 A problem of fill-ins and reordering	123
	3.3.4 Initial nonsymmetrical reordering	128
	3.3.5 Implementation of the solution procedure	132
	3.3.6 The sparse-matrix technique dedicated to the tableau	
	equations	136
Refe	rences	

Chapter 4 D.c. Analysis of Nonlinear Circuits

4.1	Introduction to d.c. analysis	143
	4.1.1 Importance of d.c. analysis	143
	4.1.2 Substitute d.c. nonlinear circuits	143
	4.1.3 Outline of iterative methods used in practical simulators	147
4.2	A basic Newton-Raphson method	149
	4.2.1 The case of a single nonlinear equation	149
	4.2.2 NR method for a system of algebraic equations	158
	4.2.3 Methods for automatic formulation of iterative equations	161
	4.2.4 Realization of the basic d.c. analysis algorithm	174
4.3	Practical quasi-Newton-Raphson algorithms	178
	4.3.1 Numerical problems with the basic NR algorithm	178
	4.3.2 Technique of NR step limiting on nonlinear elements .	185
	4.3.3 Other improvements and extensions of the NR method	193
4.4	Continuation methods	198
	4.4.1 Homotopies and their applications	199
	4.4.2 Efficient algorithms for solving homotopies	202
Refe	rences	207

Chapter 5 Time-domain Analysis of Nonlinear Circuits

5.1	Introduction to integrating circuit equations	209
	5.1.1 Basic polynomial methods	209
	5.1.2 Realization of an algorithm for integrating OADE	217

	5.1.3 BDF based on Newton's interpolation	223
5.2	Formulation of circuit equations for time-domain	
	transient analysis	229
	5.2.1 The companion circuit method	229
	5.2.2 Numerical problems due to selection of state variables .	237
5.3	Accuracy of differentiation formulae	248
	5.3.1 Theory of the local truncation error	248
	5.3.2 A LTE controlled variable step time-domain analysis	255
5.4	Global properties of differentiation formulae	263
	5.4.1 Stability of differentiation formulae	263
	5.4.2 Convergence of differentiation formulae	269
	5.4.3 Contractive differentiation formulae	269
	5.4.4 Numerical damping of differentiation formulae	272
Refe	erences	275

Chapter 6 Periodic Steady-state Time-domain Analysis

6.1	Introductory topics	277
	6.1.1 General overview of the problem	277
	6.1.2 The periodic steady-state calculation problem	280
6.2	Method of Aprille, Colon and Trick	283
	6.2.1 A general principle for realization of NR iterations	283
	6.2.2 Incremental companion models for the calculation	
	of derivatives	286
	6.2.3 Application of the NR method to autonomous circuits .	291
	6.2.4 Realization of algorithm	292
6.3	Method of Bukowski	297
	6.3.1 Theoretical formulation of the method	297
	6.3.2 Extension of the secant method to autonomous circuits	298
	6.3.3 Practical implementation of the method	300
Refe	erences	306

Chapter 7 Sensitivity Analysis

7.1	Foundations of sensitivity analysis	307
	7.1.1 Definitions of sensitivities	307
	7.1.2 Sensitivities as quality measures of circuit response	
	spreads	310
	7.1.3 Large-change sensitivities and sensitivity nonlinearities	

7.2	Small-change sensitivity analysis of static circuits	312
	7.2.1 The incremental equations method	313
	7.2.2 The adjoint equations method	319
	7.2.3 Generalized adjoint circuit method based on Tellegen's	
	theorem	327
	7.2.4 Sensitivity analysis of small-signal a.c. network	
	functions	333
7.3	Sensitivity analysis of time-domain responses	337
	7.3.1 The method of variational equations	338
7.4	Large-change sensitivity analysis of linear circuits	346
	7.4.1 Introduction to large-change sensitivity problems	346
	7.4.2 One-variable large-change sensitivity problems	347
	7.4.3 Multiparameter large-change sensitivity analysis	354
Refe	rences	362

Chapter 8 Decomposition-based Methods for Large-scale Circuits

8.1	Introductory topics in large-scale circuit simulation	363
8.2	Decomposition-based linear circuit analysis	367
	8.2.1 Decomposition of linear circuits	369
	8.2.2 Finite methods for the solution of decomposed circuits	376
8.3	Direct methods with macromodularization and latency	386
	8.3.1 Introduction	386
	8.3.2 Nodal decomposition of algebraic nonlinear equations .	387
	8.3.3 A multilevel Newton-Raphson algorithm with	
	maromodeling and latency	390
Refe	rences	401

Chapter 9 Relaxation-based Simulation Methods

9.1	Introductory topics in relaxation methods	403
9.2	Linear relaxation methods	406
	9.2.1 Simple relaxation algorithms and their properties	407
	9.2.2 The Gauss-Seidel method	408
	9.2.3 Simple over-relaxation method	412
9.3	One-point nonlinear relaxation methods	414
	9.3.1 General formulation of nonlinear relaxation methods	414
	9.3.2 Timing analysis as relaxation-based integration	418
	9.3.3 Iterated timing analysis	423

9.3.4 One-step relaxation timing analysis (OSR)	427
9.3.5 Nonlinear relaxation methods on the block level	429
9.4 Waveform-relaxation analysis	436
9.4.1 Basic waveform-relaxation analysis	436
9.4.2 Speed-up techniques for waveform-relaxation analysis .	439
9.4.3 Waveform-relaxation Newton analysis (WRNA) and	
Newton waveform-relaxation analysis (NWRA)	442
9.5 Partitioning, ordering and scheduling for relaxation circuit	
analysis	444
9.5.1 Circuit partitioning	445
9.5.2 Ordering of circuit components	447
9.5.3 Scheduling of circuit components for relaxation	
analysis	451
9.5.4 Dynamic scheduling using an event-driven technique	452
References	460
Index	463