Joachim Kessler

Polarized Electrons

Second Edition

With 157 Figures

Springer-Verlag Berlin Heidelberg New York Tokyo

Contents

1.	Intro	oduction	1
	1.1 1.2	Why Conventional Polarization Filters Do Not Work with	1
		Electrons	2
2.	Des	cription of Polarized Electrons	7
	2.1	A Few Results from Elementary Quantum Mechanics	7
	2.2		9
	2.3	Statistical Mixtures of Spin States. Description of Electron Polari-	
		zation by Density Matrices	14
3.	Pola	rization Effects in Electron Scattering Caused by Spin-Orbit	
	Inte	raction	20
	3.1	The Dirac Equation and Its Interpretation	20
	3.2	Calculation of the Differential Scattering Cross Section	31
	3.3	The Role of Spin Polarization in Elastic Scattering	38
		3.3.1 Polarization Dependence of the Cross Section	38
		3.3.2 Polarization of an Electron Beam by Scattering	41
		3.3.3 Behavior of the Polarization in Scattering	42
		3.3.4 Double Scattering Experiments	46
	3.4	Simple Physical Description of the Polarization Phenomena	49
		3.4.1 Illustration of the Rotation of the Polarization Vector	49
		3.4.2 Illustration of the Change in the Magnitude of the Polar-	50
		ization Vector	50
		ized Beam	53
		3.4.4 Transversality of the Polarization as a Consequence of	55
		Parity Conservation. Counterexample: Longitudinal Polar-	
		ization in β Decay	53
		3.4.5 Equality of Polarizing and Analyzing Power	56
	3.5	Polarization Violating Reflection Symmetry	58
	3.6	Quantitative Results	62
		3.6.1 Coulomb Field	62
		3.6.2 Screened Coulomb Field	64

x	C	ontents	
	3.7	Experimental Setups	
	3.8		
	3.9	Inelastic Scattering	
4.		rization Effects Caused by Exchange Processes in Electron-	
	Ator	m Scattering	84
	4.1		84
	4.2	The Composite Spin Space of Electron and Target	91
	4.3	Cross Section and Polarization in Elastic Exchange Scattering.	
	4.4	Polarization Experiments in Elastic Exchange Scattering	
	4.5	Inelastic Exchange Processes with One-Electron Atoms	
		4.5.1 Spin-Dependent Electron-Impact Ionization	
		4.5.2 Spin-Dependent Effects in Electron-Impact Excitation.	109
		4.5.3 Emission of Circularly Polarized Light Induced by Excita-	
		tion with Polarized Electrons	117
	4.6	-	4.0.4
		by Polarized Electrons	
	4.7		
	4.8	Møller Scattering	137
5.	Pola	rized Electrons by Ionization Processes	142
	5.1	Photoionization of Polarized Atoms	
	5.1 5.2		
	5.2	The Fano Effect and Its Consequences	
		5.2.1 Illustration of the Fano Effect. Experimental Results	
		5.2.2 Industration of the Pano Effect. Experimental Results	131
		Unpolarized Light	156
		5.2.4 The "Perfect" Photoionization Experiment	162
		J.Z.+ The Teneet ThotolomZation Experiment	102

	5.5.1	Comsion	ial Ioniza	tion	0	PO	ariz	zea	IVI	etas	lad	le	De	εuι	en	IUI	m	
		Atoms									•					•		180
	5.5.2	Penning	Ionizatio	on.	•							•		•		•		182
< F			-	т	. 1	•	D		• •									106
6. Fur	ther Ro	elativistic	Processe	s In	VOI	ving	Po	olar	IZed	E	ect	ror	IS	•	·	٠	•	190
		e lativistic sstrahlung				0												

Contents	XI

7. Po	larized Electrons from Solids and Surfaces
7.1	Polarized Electrons from Magnetic Materials
	7.1.1 Photoemission
	7.1.2 Field Emission
	7.1.3 Secondary Electron Emission
7.2	•
7.3	
8. Fu	rther Applications and Prospects
8.1	Delevier Archevie 200
0.1	
	8.1.1 Polarization Transformers
	8.1.2 Polarization Analysis Based on Scattering Asymmetry
8.2	8.1.3 Spin-Dependent Absorption
8.2 8.3	
0.2	
0	of the Electron. Electron Maser
8.4	
8.5	F,
8.6	
8.7	Prospects
Refer	e nces
Subje	ct Index

.