EMULSION POLYMERIZATION

Edited by

IRJA PIIRMA

Institute of Polymer Science The University of Akron Akron, Ohio

ACADEMIC PRESS

A Subsidiary of Harcourt Brace Jovanovich, Publishers New York London Toronto Sydney San Francisco 1982

Contents

6

Contributors	ix
Preface	xi

1 The Stability and Instability of Polymer Latices

R. H. Ottewill

١.	Introduction	1
H.	The Nature of Polymer Latex Particles	2
III.	The Effect of Electrolytes on a Latex	6
IV.	The Theory of the Stability of Lyophobic Colloids	8
V .	Coagulation as a Kinetic Process	14
VI.	An Alternative Approach to the Critical Coagulation Concentration	16
VII.	The Determination of ccc Values	17
VIII.	The Effect of lons That Interact with Water	19
IX.	Secondary Minimum Effects	22
Χ.	The Effects of Organic Ions: Added Surfactants	26
XI.	Ionic Head Group with a Charge of the Same Sign as the Particle	27
XII.	Ionic Head Group with a Charge of Opposite Sign to the Particle	28
XIII.	Nonionic Surfactants	31
XIV.	Mixed Electrolyte Systems	35
XV.	Heterocoagulation	36
XVI.	Surface Coagulation	39
XVII.	Peptization	40
XVIII.	The Effects of Adsorbed or Grafted Macromolecules	42
XIX.	Particle Stability in Emulsion Polymerization	45
XX.	Summary	47
	References	47

2 Particle Formation Mechanisms

F. K. Hansen and J. Ugelstad

I.	Introduction	51
II.	Micellar Nucleation: The Smith-Ewart Theory	54
III.	Radical Absorption Mechanisms	56
IV.	Micellar Nucleation: Newer Models	63
٧.	Homogeneous Nucleation	73
VI.	Particle Coagulation during the Formation Period	82
VII.	Nucleation in Monomer Droplets	86
	References	91

3 Theoretical Predictions of the Particle Size and Molecular Weight Distributions in Emulsion Polymerizations

Gottfried Lichti, Robert G. Gilbert, and Donald H. Napper

I.	Prediction of the PSD	94
11.	Molecular Weight Distributions	115
III.	Separability of MWD and PSD	141
IV.	Conclusions	142
	References	143

4 Theory of Kinetics of Compartmentalized Free-Radical Polymerization Reactions

D. C. Blackley

I.	Introduction	146
И.	Reaction Model Assumed	149
111.	The Time-Dependent Smith-Ewart Differential Difference Equations:	
	Methods Available for Their Solution	156
IV.	Solution for the Steady State	164
٧.	Solutions for the Nonsteady State	167
VI.	Predictions for Molecular Weight Distribution and Locus-Size	
	Distribution	183
VII.	Theory for Generation of Radicals in Pairs within Loci	185
	List of Symbols	187
	References	189

5 Desorption and Reabsorption of Free Radicals in Emulsion Polymerization

Mamoru Nomura

Ι.	Introduction	191
11.	Polymerization Rate Equations Involving Free-Radical Desorption	192
III.	Derivation of Rate Coefficient for Radical Desorption from Particles	199
IV.	Effect of Free-Radical Desorption on the Kinetics of Emulsion	
	Polymerization	210
	List of Symbols	217
	References	219

6 Effects of the Choice of Emulsifier in Emulsion Polymerization

A. S. Dunn

١.	Introduction	221
П.	Monomer Emulsification	224
III.	Emulsion Polymerization with Nonionic Emulsifiers	229
IV.	Emulsion Polymerization with Ionic Emulsifiers	230
۷.	Latex Agglomeration	236
VI.	Other Effects of Emulsifiers	237
	References	243

vi

Contents

7 Polymerization of Polar Monomers

V. I. Yeliseyeva

1.	Introduction	247
II.	Interface Characteristics of Polymeric Dispersions	249
111.	. Relationship between Emulsifier Adsorption and the Difference in the	
	Boundary-Phase Polarity	250
IV.	Mechanism of Particle Generation	257
۷.	Colloidal Behavior of Polymerization Systems	261
VI.	Kinetics of Emulsifier Adsorption	268
VII.	Mechanism of Formation and Structure of Particles	270
VIII.	Polymerization Kinetics	278
IX.	Relationship between Polymerization Kinetics and Adsorption	
	Characteristic of the Interface	283
	Nomenclature	286
	References	287

8 Recent Developments and Trends in the Industrial Use of Latex

Carlton G. Force

Ι.	Introduction	289
П.	Factors in Adhesion	291
III.	Bonding Applications	300
IV.	Construction Applications	312
V.	Rubber Goods	313
VI.	Properties of Various Latexes	314
	References	316

9 Latex Reactor Principles: Design, Operation, and Control

A. E. Hamielec and J. F. MacGregor

١.	Introduction	319
II.	Batch Reactors	320
III.	Continuous Stirred-Tank Reactors: Steady-State Operation	333
IV.	Continuous Stirred-Tank Reactors: Dynamic Behavior	339
V.	On-Line Control of Continuous Latex Reactors	345
VI.	Summary	351
	Nomenclature	351
	References	353

10 Emulsion Polymerization in Continuous Reactors

Gary W. Poehlein

Ι.	Introduction	357
11.	Smith-Ewart Case 2 Model for a CSTR	361
111.	Deviations from Smith-Ewart Case 2	367
IV.	Transient Behavior of CSTR Systems	375
V.	Strategies for Process and Product Development	378
VI.	Summary	381
	References	381

11 Effect of Additives on the Formation of Monomer Emulsions and Polymer Dispersions

J. Uglestad, P. C. Mørk, A. Berge, T. Ellingsen, and A. A. Khan

١.	Introduction	383
11.	Thermodynamic Treatment of Swelling and Phase Distributions	384
111.	Rate of Interphase Transport	392
IV.	Preparation of Polymer Dispersions	396
٧.	Effect of Addition of Water-Insoluble Compounds to the Monomer Phase	401
VI.	Emulsification with Mixed Emulsifier Systems	408
	List of Symbols	411
	References	412

12 Radiation-Induced Emulsion Polymerization

Vivian T. Stannett

1.	Introduction	415
н.	Laboratory Results with Different Monomers	418
III.	Copolymerizations	433
IV.	Radiation-Induced Emulsion Polymerization Using Electron Accelerators	436
V.	Pilot Plant and Related Studies	437
	References	447

Index

451