An Atlas of Fullerenes

P. W. FOWLER

Department of Chemistry, University of Exeter

and

D. E. MANOLOPOULOS

Department of Chemistry, University of Nottingham

CLARENDON PRESS • OXFORD 1995

CONTENTS

1 Introduction	1
1.1 The fullerene hypothesis	2
1.2 From hypothesis to experimental fact	5
1.3 The need for a systematic theory	9
1.4 What this book contains	10
References and notes	12
2 Fullerene cages	15
2.1 Fullerene polyhedra	15
2.2 Fullerene duals	17
2.3 The Coxeter construction	18
2.4 Fullerene graphs	22
2.5 The spiral conjecture	23
2.6 The spiral algorithm	27
2.7 How many fullerenes are there?	31
2.8 A fullerene without a spiral	35
2.9 Concluding remarks	39
References and notes	41
3 Electronic structure	43
3.1 Qualitative molecular orbital theory	44
3.2 Open, closed, and pseudo-closed shells	47
3.3 Icosahedral fullerenes	50
3.4 The leapfrog transformation	51
3.5 Carbon cylinders	59
3.6 Sporadic closed shells	62
3.7 Conclusion	65
References and notes	66
4 Steric strain	68
4.1 Steric strain and rehybridization	69

CONTENTS

	4.2 The isolated-pentagon rule	73
	4.3 Pentagon indices for lower fullerenes	75
	4.4 Hexagon indices for higher fullerenes	80
	4.5 Steric strain in leapfrogs and carbon cylinders	84
	4.6 Selected higher fullerene examples	88
	References and notes	93
5	Symmetry and spectroscopy	95
	5.1 The fullerene point groups	95
	5.2 Topological coordinates	101
	5.3 Symmetry assignment	105
	$5.4^{13}\mathrm{C}\ \mathrm{NMR}\ \mathrm{spectra}$	111
	5.5 IR and Raman spectra	113
	References and notes	118
6	Fullerene isomerization	120
	6.1 The Stone–Wales rearrangment	120
	6.2 Symmetry aspects	125
	6.3 Chirality and the Stone–Wales transformation	129
	6.4 Isomerization maps	131
	$6.5 \text{ The C}_{60} \text{ Stone-Wales map}$	141
	6.6 Isomer distributions	145
	References and notes	147
7	Carbon gain and loss	149
	7.1 C ₂ insertion and extrusion	150
	7.2 Symmetry aspects of C_2 processes	153
	7.3 Insertion/extrusion maps	157
	References and notes	163
	Appendix	
	The Spiral computer program	165
	Atlas tables	177
	General fullerene isomers C_{20} to C_{50}	180
	Isolated-pentagon isomers C_{60} to C_{100}	254
	Index	289