Peter Kennedy

Flow Analysis of Injection Molds

Hanser Publishers, Munich Vienna New York Hanser/Gardner Publications, Inc., Cincinnati

Contents

Pret	face .		3.1.) - Grešs on an External Audioc		v
			3.1.2 Stress stran Interior Point Court		
P8 .					
List	of Fig	gures .	Rate of Strain Tensor	3.2	. xiv
			Compressule and incompress his Fig. 2		
CH/	APTE	R 1			
	1.1		The Injection Molding Cycle		
	1.2		The Need for Simulation Software		. 4
СН		R 2	Material Properties	APTE:	. 6
	2.1		Types of Polymers	4.1	. 6
		2.1.1	Amorphous and Semi-crystalline Materials		. 7
	2.2		Viscosity, Shear Rate and Shear Stress		
	2.3		Newtonian and Non-Newtonian Fluids		. 9
	2.4		Viscosity Models for Flow Analysis		
		2.4.1	Power Law Model	4.2	. 10
		2.4.2	Moldflow Second Order Model		
		2.4.3	Moldflow Matrix Data Model	. 4 4 .	. 12
		2.4.4	The Ellis Model		. 12
		2.4.5	The Carreau Model		. 12
		2.4.6	Cross Model		. 13
	2.5		Viscosity Model Requirements	4.0	. 13
	2.6		Extrapolation of Viscosity Data		. 14
	2.7		Thermal Properties for Flow Analysis	APTE	. 15
		2.7.1	Specific Heat Capacity		. 16
		2.7.2	Thermal Conductivity		. 17
		2.7.3	No-Flow Temperature		
	2.8		Thermodynamic Relationships		
		2.8.1	Expansivity and Compressibility		
		2.8.2	PVT Data for Flow Analysis		

CHAPTER 3	Stress and Strain in Fluid Mechanics
3.1	Stress in Fluids
3.1.1	Stress on an External Surface
3.1.2	Stress at an Interior Point
3.1.3	Hydrostatic Pressure
3.2	Rate of Strain Tensor
3.3	Compressible and Incompressible Fluids
3.4	Newtonian and Non-Newtonian Fluids
3.4.1	Shear Rate and Choice of Viscosity Function 37
CHAPTER 4	Governing Equations for Fluid Flow
4.1	Mathematical Preliminaries
4.1.1	The Material Derivative
4.1.2	Gauss's Divergence Theorem
4.1.3	Reynold's Transport Theorem
4.2	Conservation of Mass44
4.3	Conservation of Momentum
4.4	Conservation of Energy
4.4.1	Relating Specific Energy to Temperature50
4.4.2	The Energy Equation in Terms of Temperature 54
4.5	Boundary Conditions
CHAPTER 5	Governing Equations for the Filling Phase
5.1	Material Assumptions
5.1.1	Melt Compressibility
5.1.2	Fluid Model
5.1.3	Thermal Properties of the Melt 61
5.1.4	Resulting Equations

5.2		Geometric Considerations: The Cavity
	5.2.1	Dimensional Analysis
	5.2.2	The Continuity Equation for the Cavity 65
	5.2.3	The Momentum Equation for the Cavity 66
	5.2.4	The Energy Equation for the Cavity
	5.2.5	Resulting Equations
5.3		Simplification by Mathematical Analysis
	5.3.1	Integration of the Momentum Equations
	5.3.2	Integration of the Continuity Equation
5.4		Simplification Due to Symmetry
5.5		Equations for Runners
	5.5.1	The Continuity Equation for Runners
	5.5.2	The Momentum Equations for Runners 83
	5.5.3	The Energy Equation for Runners
	5.5.4	Resulting Equations for Runners
	5.5.5	Integration of the Momentum Equation for
		Runners 85
	5.5.6	Integration of the Continuity Equation for Runners . 88
5.6		Summary
CHAPTER 6		Governing Equations for the Packing Phase
6.1		The Momentum Equation for the Cavity
	6.1.1	Effect of Assumptions on Momentum Equation 93
6.2		The Continuity Equation for the Cavity
6.3		The Energy Equation for the Cavity
6.4		Integration of the Continuity Equation
6.5		Packing Equations for Runners
	6.5.1	Continuity 102
	6.5.2	Momentum:
	6.5.3	Energy
6.6		Integration of the Continuity Equation for Runners . 104
6.7		Summary I did a Munchight S. D. B 107

CHAPTER 7		Numerical Methods Used in Flow Analysis: The Finite Element Method
	7.1	Introduction to the Finite Element Method 109
	7.1.1	Basic Terminology
	7.1.2	The Finite Element Approach
	7.2	The Nature of a Finite Element Solution 114
	7.3	Shape Functions
	7.4	Finding Nodal Values
	7.4.1	Weighted Residual Methods
	7.4.2	Galerkin's Method
	7.5	Constraint Equations
	7.5.1	Special Case 1: Two Unknowns Equal 121
	7.5.2	Special Case 2: One Unknown Constant 123
	7.6	A One Dimensional Problem Solved Using the FEM . 124
	7.6.1	Meshing
	7.6.2	Derivation of Element Equations
	7.6.3	Assembly
	7.6.4	Application of Boundary Conditions
	7.6.5	Solution of System Equations
	7.7	Conclusion
CHAPTER 8		Numerical Methods Used in Flow Analysis: The Finite Difference Method
101	8.1	Introduction to the Finite Difference Method 138
 	8.2	A Simple Example
ent l	8.3	The Diffusion Equation
	8.3.1	Explicit Methods 146
	8.3.2	Implicit Methods

CHAPTER 9)	Numerical Solution for the Filling Phase
	9.1		Overview of Solution Process
	9.2		Finite Element Solution for the Pressure Field 152
	9.	.2.1	Finite Element Formulation for Triangular Elements
	9.	ి:2.2 లిం	Finite Element Formulation for Runner Elements . 160
	9.	.2.3	Assembly of Element Equations
	9.	.2.4	Application of Boundary Conditions
	9.	.2.5	Solution of the System Equations
	9.3		Finite Difference Solution of the Energy Equation for the Cavity
	9.	.3.1	Finite Difference Grid Definition
	9.	.3.2	Treatment of Convection and Dissipation Terms . 172
	9.4		Solution of Energy Equation
	9.	.4.1	Explicit Finite Difference Method
	9.	.4.2	Implicit Finite Difference Method
	9.	.4.3	Numerical Solution of the Energy Equation for Runners
	9.5		Advancement of the Flow Front
	9.	.5.1	Nodal Growth of Flow Front
	9.6		Accounting for Compressibility and Expansivity of the Melt
209	PTER 1	10	Numerical Solution of the Packing Phase
10.1 210			Overview of the Solution Process
	10.2		Finite Element Formulation for the Pressure Field in the Cavity
	10	0.2.1	Assembly of Element Equations and Solution 192
	100 10	0.2.2	Finite Element Pressure Solution for Runners 193
	10.3		The Use of PVT Data and Thermal Calculations 197

Appendix A	Notation Used in Text
0.1 . A.1	Roman Symbols
A.2	Greek Symbols
A.3	Mathematical Symbols
A.4	Vectors and Tensor Quantities
A.5 mail to	Results of Vector and Tensor Products
Appendix B	Vector and Tensor Operations
88 B.1	Cartesian Coordinates
B.1.1	The Gradient Operator
B.1.2	Gradient of a Scalar Function
B.1.3	Laplacian of a Scalar Function
B.1.4	Divergence of a Vector Field
B.1.5	Gradient of a Vector Field
B.1.6	Dot Product of Tensor and Vector
B.1.7	Dyadic Product
B.1.8	The Rate of Deformation Tensor
B.1.9	Divergence of Product of a Scalar and Tensor 207
B.1.10	The Scalar Product of Two Tensors (Double Dot Product)
B.2	Cylindrical Coordinates
B.2.1	The Gradient Operator
B.2.2	Gradient of a Scalar Function
B.2.3	Laplacian of a Scalar Function
B.2.4	Divergence of a Vector Field
B.2.5	Gradient of a Vector Field
B.2.6	Dot Product of Vector and Tensor
B.2.7	ana ontrol nobletanto i analia a anti anti a cana 210
B.2.8	The Rate of Deformation Tensor
B.2.9	Divergence of a Tensor
B.2.10	The Scalar Product of Two Tensors (Double Dot Product)

Appendix C	Dimensional Analysis of Governing Equation	
C.1	Characteristic Values	212
C.2	Equations for the Filling Phase	
	ismen't "66" vitv 20" en el en el testi s roatChine en el Steady Simple Sheas Flow el ance el el el	
Appendix D	References	
Index	Macosity Data with No-Flow Temperature Definition of Thermal Conductivity 111.	
	Shear Rate and Temperature Distribution	
	Orthogonal Surfaces at Interior Point O (
	Boundary Conditions for Injection Moldin	
	Coordinate System for Mold Cavity .	
	Frozen Layer Thickness	
		Figure 7.21
	Fine Mesh for Finite Difference Solution	