Interfaces in Crystalline Materials

A.P. SUTTON

University Lecturer, Department of Materials, University of Oxford and Fellow of Linacre College, Oxford

and

R.W. BALLUFFI

Professor, Department of Materials Science and Engineering, Massachusetts Institute of Technology

CLARENDON PRESS · OXFORD 1995

Contents

Ve

List of symbols Glossary		xxvii xxix
	PART I INTERFACIAL STRUCTURE	
1	The geometry of interfaces	3
	1.1 Introduction	3
	1.2 All the group theory we need	4
	1.3 The relationship between two crystals	5
	1.3.1 Crystals and lattices	5
	1.3.2 Vector and coordinate transformations	6
	1.3.3 Descriptions of lattice rotations	8
	1.3.3.1 Vector and matrix representations	8
	1.3.3.2 The Frank-Rodrigues map	10
	1.3.3.3 Fundamental zones	12
	1.3.3.4 Quaternions	17
	1.4 Geometrical specification of an interface	20
	1.4.1 Macroscopic and microscopic geometrical degrees of freedom	20
	1.4.2 Macroscopic geometrical degrees of freedom of an arbitrary interface	21
	1.4.3 Grain boundaries in cubic materials	21
	1.4.3.1 The median lattice and the mean boundary plane	21
	1.4.3.2 Tilt and twist components	23 24
	1.4.3.3 Symmetric and asymmetric tilt boundaries	24 25
	1.5 Bicrystallography	
	1.5.1 Introduction	25
	1.5.2 Outline of crystallographic methodology 1.5.3 Introduction to Seitz symbols	26 30
	1.5.4 Symmetry of dichromatic patterns	30
	1.5.5 Symmetry of dichromatic complexes	38
	1.5.6 Symmetry of ideal bicrystals	40
	1.5.7 Symmetry of real bicrystals	40
	1.6 Two examples	42
	1.6.1 Lattice matched polar-non-polar epitaxial interfaces	42
	1.6.2 Lattice matched metal-silicide silicon interfaces	45
	1.7 Classification of isolated interfacial line defects	46
	1.7.1 General formulation	48
	1.7.2 Interfacial dislocations	51
	1.7.2.1 DSC dislocations	51
	1.7.2.2 Supplementary displacement dislocations	52
	1.7.2.3 Relaxation displacement dislocations	55
	1.7.2.4 Non-holosymmetric crystals and interfacial defects	56
	1.7.2.5 Interfacial disclinations and dispirations	58
	1.8 The morphologies of embedded crystals	58
	1.9 Quasiperiodicity and incommensurate interfaces	62
	References	68

Con	tents
-----	-------

2	Dislocation models for interfaces	70
	2.1 Introduction	70
	2.2 Classification of interfacial dislocations	74
	2.3 The Frank-Bilby equation	86
	2.4 Comments on the Frank-Bilby equation and the dislocation content	
	of an interface	92
	2.5 Frank's formula	95
	2.6 The O-lattice	96
	2.7 The geometry of discrete dislocation arrays in interfaces	101
	2.7.1 The general interface	101
	2.7.2 Application to a grain boundary with arbitrary geometrical parameters	104
	2.7.3 Grain boundaries containing one and two sets of dislocations	105
	2.7.4 Epitaxial interfaces	108
	2.8 Local dislocation interactions	110
	2.9 Two examples	111
	2.9.1 Pt-NiO interfaces	111
	2.9.2 Al-Al ₃ Ni eutectic interfaces	113
	2.10 Elastic fields of interfaces	115
	2.10.1 Introduction	115
	2.10.2 Stress and distortion fields of grain boundaries in isotropic elasticity	116
	2.10.3 Grain boundary energies	120
	2.10.4 Stress fields of heterophase interfaces in isotropic elasticity	125
	2.10.5 Dislocation arrays at interfaces in anisotropic elasticity	129
	2.10.6 Isotropic elastic analysis of epitaxial interfaces	129
	2.10.7 Stress fields of precipitates and non-planar interfaces 2.11 Degree of localization of the cores of interfacial dislocations	131 132
	2.11 Degree of localization of the cores of interfacial dislocations 2.11.1 Introduction	132
	2.11.1 Introduction 2.11.2 Lattice theories of dislocation arrays	132
	2.11.2.1 Introduction	133
	2.11.2.2 Peierls-Nabarro model for an isolated edge dislocation	135
	2.11.2.3 Peierls-Nabarro model for a symmetrical tilt boundary	136
	2.11.2.4 The van der Merwe model for a symmetrical tilt boundary	138
	2.11.3 Atomistic models using computer simulation and interatomic forces	139
	2.12 Experimental observations of arrays of interfacial dislocations	139
	2.12.1 Mainly room-temperature observations	139
	2.12.2 High-temperature observations	146
	References	147
3	Models of interatomic forces at interfaces	149
	3.1 Introduction	149
	3.2 Density functional theory	152
	3.2.1 The variational principle and the Kohn-Sham equations	152
	3.2.2 The Harris-Foulkes energy functional	152
	3.3 Valence and core electrons: pseudopotentials	160
	3.4 The force theorem and Hellmann–Feynman forces	163
	3.5 Cohesion and pair potentials in <i>sp</i> -bonded metals	165
	3.6 Effective medium theory	174
	3.7 The embedded atom method	177
	3.8 Tight binding models	181

101

xx

2011.1

....

3.8.2 The diatomic molecule	181
3.8.3 Bands, bonds, and Green functions	185
3.8.4 Moments of the spectral density matrix	196
3.8.5 The tight binding bond (TBB) model	202
3.8.6 The second moment approximation	207
3.8.7 Beyond the second moment approximation	210
3.9 Temperature dependence of atomic interactions	211
3.10 Ionic bonding	224
3.11 Interatomic forces at heterophase interfaces	229
References	236
4 Models and experimental observations of atomic structure	240
4.1 Introduction: classification of interfaces	240
4.2 Diffuse interfaces	241
4.2.1 Heterophase interfaces in systems with a miscibility gap	243
4.2.2 Antiphase domain boundaries in systems with long-range order	247
4.2.3 Displacive transformation interfaces in systems near a mechanical	
instability	249
4.3 Sharp homophase interfaces: large-angle grain boundaries	252
4.3.1 Large-angle grain boundaries in metals	253
4.3.1.1 The significance of the rigid body displacement parallel to the boundary	
plane	253
4.3.1.2 The significance of the expansion normal to the boundary plane	259
4.3.1.3 Testing the analytic model 4.3.1.4 The significance of individual atomic relaxation	264 265
4.3.1.5 Discussion: singular, vicinal, and general interfaces	203
4.3.1.6 Methods of computer simulation	272
4.3.1.7 The polyhedral unit model	284
4.3.1.8 The structural unit model	286
4.3.1.9 Three-dimensional grain boundary structures	305
4.3.1.10 The influence of temperature	311
4.3.2 Grain boundaries in ionic crystals	318 324
4.3.3 Grain boundaries in covalent crystals	324
4.4 Sharp heterophase interfaces	
4.4.1 Introduction	327
4.4.2 Metal-metal interfaces 4.4.3 Metal-insulator interfaces	330 332
4.4.5 Metal-insulator interfaces	332
References	338
References	541
PART II INTERFACIAL THERMODYNAMICS	
5 Thermodynamics of interfaces	349
5.1 Introduction	349
5.2 The interface free energy	349
5.3 Additional interface thermodynamic quantities and relationships	
between them	353
5.4 Introduction of the interface stress and strain variables	359
5.5 Introduction of the geometric thermodynamic variables	366
5.6 Dependence of σ on the interface inclination	367
5.6.1 The Wulff plot	367
5.6.2 Equilibrium shape (Wulff form) of embedded second-phase particle	369

Contents

	5.6.3 Faceting of initially flat interface	372
	5.6.4 The capillarity vector, ξ	375
	5.6.5 Capillary pressure associated with smoothly curved interface	378
	5.6.6 Equilibrium lattice solubility at a smoothly curved heterophase interface	379
	5.6.7 Equilibrium solubility at embedded second-phase particle	381
	5.6.8 Equilibrium interface configurations at interface junction lines	382
	5.6.9 Further thermodynamic relationships involving changes in interface	
	inclination	383
	5.7 Dependence of σ on the crystal misorientation	384
	5.8 Dependence of σ on simultaneous variations of the interface	• • • •
	inclination and crystal misorientation	386
	5.9 Chemical potentials and diffusion potentials, M_i , in non-uniform	
	systems containing interfaces	387
	5.9.1 Introduction	387
	5.9.2 Analysis of system at equilibrium: introduction of the diffusion	
	potential, M_i	387
	5.9.2.1 Incoherent interface	389
	5.9.2.2 Coherent interface 5.9.2.3 Summary	392 392
	5.9.3 Diffusional transport in non-equilibrium systems	393
	References	394
		574
6	Interface phases and phase transitions	396
	6.1 Introduction	396
	6.2 Interface phase equilibria	397
	6.3 Interface phase transitions	400
	6.3.1 Non-congruent phase transitions	400
	6.3.1.1 Faceting of initially flat interfaces	400
	6.3.1.2 Faceting of embedded particle interfaces	401
	6.3.1.3 Interface dissociation	402
	6.3.2 Congruent phase transitions	404
	6.3.2.1 Various transitions induced by changes in temperature, composition, or	
	crystal misorientation	405
	6.3.2.2 Interface wetting by a solid phase 6.3.2.3 Interface wetting by a liquid phase in alloy systems	409
	6.3.2.4 Grain boundary melting in a one-component system	410 410
	References	412
		412
7	Segregation of solute atoms to interfaces	414
	7.1 Introduction	414
	7.2 Overview of some of the main features of interface segregation in	717
	metals	414
	7.3 Physical models for the interaction between solute atoms and	414
	-	42.4
	interfaces	424
	7.3.1 Introduction	424
	7.3.2 Elastic interaction models	426
	7.3.2.1 Size accommodation model 7.3.2.2 Hydrostatic pressure ($P\Delta V$) and elastic inhomogeneity models	426 427
	7.3.2.2 Flydrostatic pressure (1 2 V) and elastic infomogeneity models	427
	7.3.3 Atomistic models at 0 K	430

122

7.3.4 Electronic interaction models

7.4 Statistical mechanical models of segregation	435
7.4.1 Introduction	435
7.4.2 Regular solution model	436
7.4.3 Mean field models	438
7.4.3.1 McLean isotherm	442
7.4.3.2 Fowler-Guggenheim isotherm	443
7.4.3.3 Multiple segregation site models	443
7.4.4 Beyond mean field models	447
7.4.5 Some additional models	449
7.5 Atomistic models at a finite temperature	450
7.6 Interface segregation in ionic solids	457
References	462

PART II	I INTE	RFACIA	L KINET	ICS

	PARTIII INTERFACIAL KINETIUS	
8	Diffusion at interfaces	467
	8.1 Introduction	467
	8.2 Fast diffusion along interfaces of species which are substitutional in	
	the crystal lattice	468
	8.2.1 Slab model and regimes of diffusion behaviour	468
	8.2.2 Mathematical analysis of the diffusant distribution in the type A, B,	100
	and C regimes	472
	8.2.3 Experimental observations	474
	8.2.3.1 Some major results for diffusion along interfaces	475
	8.2.3.2 Effects of interface structure	481
	8.2.4 Mechanisms for fast grain boundary diffusion	486
	8.2.4.1 Equilibrium point defects in the grain boundary core	487
	8.2.4.2 'Ring', vacancy, interstitialcy, and interstitial mechanisms	492
	8.2.5 Models for grain boundary self-diffusivities via the different	
	mechanisms	495
	8.2.5.1 Vacancy mechanism	498
	8.2.5.2 Interstitialcy mechanism	498
	8.2.5.3 Interstitial mechanism	499
	8.2.6 General characteristics of the models for boundary self-diffusion	499
	8.2.7 On the question of the mechanism (or mechanisms) of fast grain	502
	boundary diffusion	502
	8.2.7.1 Metals 8.2.7.2 Ionic materials	502 506
	8.2.7.3 Covalent materials	508
	8.3 Diffusion along interfaces of solute species which are interstitial in	000
	the crystal lattice	509
	8.4 Slow diffusion across interfaces in fast ion conductors	513
	8.5 Diffusion-induced grain boundary motion (DIGM)	514
		518
	References	518
9	Conservative motion of interfaces	522
	9.1 Introduction	522
	9.1.1 'Conservative' versus 'non-conservative' motion of interfaces	522
	9.1.2 Driving pressures for conservative motion	523
	9.1.3 Basic mechanisms: correlated versus uncorrelated processes	525
	9.1.4 Impediments to interface motion	525
	9.2 Mechanisms and models for sharp interfaces	526

Cont	ents	5
------	------	---

9.2.1 Glissile motion of interfacial dislocations	526
9.2.1.1 Small-angle grain boundaries	526
9.2.1.2 Large-angle grain boundaries	531
9.2.1.3 Heterophase interfaces	536
9.2.2 Glide and climb of interfacial dislocations	540
9.2.2.1 Small-angle grain boundaries	540
9.2.2.2 Large-angle grain boundaries 9.2.2.3 Heterophase interfaces	543 549
	550
9.2.3 Shuffling motion of pure steps 9.2.4 Uncorrelated atom shuffling and/or diffusional transport	555
9.2.4.1 Uncorrelated atom shuffling	555
9.2.4.2 Uncorrelated diffusional transport	558
9.2.5 Solute atom drag	560
9.2.6 Experimental observations of non-glissile (thermally activated) grain	200
boundary motion in metals	563
9.2.6.1 General large-angle grain boundaries	563
9.2.6.2 Singular (or vicinal) large-angle grain boundaries	566
9.2.6.3 Solute atom drag effects	569
9.2.6.4 Small-angle grain boundaries	572
9.3 Mechanisms and models for diffuse interfaces	573
9.3.1 Propagation of non-linear elastic wave (or, alternatively, coherency	575
dislocations)	574
9.3.2 Self-diffusion	574
9.3.2 Sen-ullusion 9.4 Equations of interface motion	577
•	
9.4.1 Motion when $v = v(\hat{n})$	577
9.4.2 Motion of curved interfaces under capillary pressure	580 582
9.4.3 More general conservative motion	
9.5 Impediments to interface motion due to pinning	583
9.5.1 Pinning effects due to embedded particles	583
9.5.1.1 Pinning at stationary particles at low temperatures	583
9.5.1.2 Thermally activated unpinning	587
9.5.1.3 Diffusive motion of pinned particles along with the interface	587 590
9.5.2 Pinning at free surface grooves References	594
Kelefences	394
10 Non-conservative motion of interfaces: interfaces as sources/sinks for	
diffusional fluxes of atoms	598
10.1 Introduction	598
10.2 General aspects of interfaces as sources/sinks	599
10.2.1 'Diffusion-controlled', 'interface-controlled', and 'mixed' kinetics	599
10.2.2 Dissipation of energy during source/sink action	603
10.2.3 The maximum energy available to drive the source/sink action	604
10.2.5 The maximum energy avalable to drive the source/sink deton 10.3 Grain boundaries as sources/sinks for fluxes of atoms	606
10.3.1 Introduction	606 606
10.3.2 Small-angle grain boundaries	
10.3.2.1 Models 10.3.2.2 Experimental observations	606 613
10.3.2 Experimental observations	613
10.3.3.1 Models for singular or vicinal grain boundaries	614
10.3.3.2 Models for general grain boundaries	617
10.3.3.3 Experimental observations	618
10.4 Sharp heterophase interfaces as sources/sinks for fluxes of atoms	621

xxiv

10.4.1 Models	621
10.4.1.1 Singular or vicinal heterophase interf	faces 621
10.4.1.2 General heterophase interfaces	624
10.4.2 Experimental observations	624
10.4.2.1 Growth, coarsening, shape-equilibration	ion, and shrinkage of small precipitate
particles	624
10.4.2.2 Growth of phases in the form of fla	t parallel layers 634
10.4.2.3 Annealing of supersaturated vacancie	es 640
10.4.2.4 Diffusional accommodation of bound	dary sliding at second phase particles 642
10.5 Diffuse heterophase interfaces as sou	rces/sinks for solute atoms 644
10.6 On the question of interface stability	during source/sink action 647
References	651

PART IV INTERFACIAL PROPERTIES

11 E	Electronic properties of interfaces	657
11	.1 Introduction	657
11	.2 Metal-semiconductor interfaces	660
	11.2.1 Introduction	660
	11.2.2 The Schottky model	660
	11.2.3 The Bardeen model	663
	11.2.4 Metal-induced gap states (MIGS)	664
	11.2.5 The defect model	668
	11.2.6 The development of the Schottky barrier as a function of metal	
	coverage	669
	11.2.7 Schottky barriers on Si	671
	11.2.8 Discussion of models for Schottky barriers	673
	11.2.9 Inhomogeneous Schottky barriers	673
	.3 Semiconductor heterojunctions	674
	11.3.1 Introduction	674
	11.3.2 The band offsets	676
CHORE .	.4 Grain boundaries in metals	684
	.5 Grain boundaries in semiconductors	689
	.6 Grain boundaries in high temperature superconductors	695
R	eferences	700
12 N	Aechanical properties of interfaces	·704
12	2.1 Introduction	704
12	2.2 Compatibility stresses in bicrystals and polycrystals	704
	12.2.1 Compatibility stresses caused by applied elastic stress	704
	12.2.2 Compatibility stresses caused by plastic straining	709
	12.2.3 Compatibility stresses caused by heating/cooling	710
12	2.3 Elastic interactions between dislocations and interfaces	711
12	2.4 Interfaces as sinks, or traps, for lattice dislocations	714
	12.4.1 Introduction	714
	12.4.2 Small-angle grain boundaries	716
	12.4.3 Large-angle grain boundaries and heterophase boundaries	721
	12.4.3.1 Singular boundaries	721
	12.4.3.2 General boundaries	726
	12.4.4 On the global equilibration of impinged lattice dislocations	729
12	2.5 Interfaces as sources of both interfacial and lattice dislocations	730

Contents

12.5.1 Interfaces as sources of interfacial dislocations	731
12.5.2 Interfaces as sources of lattice dislocations	732
12.5.2.1 Singular interfaces	733
12.5.2.2 General interfaces	734
12.6 Interfaces as barriers to the glide of lattice dislocations (slip)	737
12.6.1 Grain boundaries	737
12.6.2 Heterophase interfaces	740
12.7 Effects of interfaces on the plastic deformation of bicrystals and	
polycrystals at low temperatures	740
12.7.1 Homophase bicrystals and polycrystals	741
12.7.2 Heterophase bicrystals and polycrystals	744
12.8 Role of interfaces in the plastic deformation of bicrystals and	
polycrystals at high temperatures	744
12.8.1 Interface sliding	745
12.8.1.1 Sliding at an ideally planar grain boundary	745
12.8.1.2 Sliding at a non-planar grain boundary by means of elastic accommodation 12.8.1.3 Sliding at a non-planar grain boundary by means of diffusional	748
accommodation	750
12.8.1.4 Sliding at a non-planar grain boundary by means of plastic flow accommodation in the lattice	750
12.8.1.5 Experimental observations of sliding at interfaces	752 753
12.8.2 Creep of polycrystals	758
12.8.2.1 Creep of homophase polycrystals controlled by diffusional transport	759
12.8.2.2 Creep of homophase polycrystals controlled by boundary sliding	763
12.8.2.3 Creep of homophase polycrystals controlled by movement of lattice dislocations	766
12.8.2.4 Further aspects of the creep of polycrystals	767
12.9 Fracture at homophase interfaces	768
12.9.1 Overview of the different types of fracture observed experimentally in	
homophase polycrystals	768
12.9.2 Propagation of cleavage cracks	772
12.9.2.1 Crack propagation in a single crystal	772
12.9.2.2 Crack propagation along a grain boundary	779
12.9.2.3 Crack propagation in homophase polycrystals	781
12.9.3 Growth and coalescence of cavities at grain boundaries at low	
temperatures by plastic flow due to dislocation glide	785
12.9.4 Growth and coalescence of cavities at grain boundaries at high	
temperatures by diffusion, power-law creep, and boundary sliding	786
12.9.4.1 Initiation of cavities 12.9.4.2 Growth of cavities	786
12.9.4.2 Crowth of cavities 12.9.4.3 Coalescence of cavities and complete intergranular fracture	789 794
12.10 Fracture at heterophase interfaces	794
References	798
Index	805