Jack D. Dunitz

X–Ray Analysis and the Structure of Organic Molecules

(2nd Corrected Reprint)

Verlag Helvetica Chimica Acta, Basel

Weinheim · New York · Basel Cambridge · Tokyo

Introduction	17	
PART ONE: CRYSTAL STRUCTURE ANALYSIS		
1. Diffraction of X-Rays by Crystals	25	
Scattering	25	
Superposition of waves	25	
Interference	27	
Fourier transforms	29	
Scattering by a point atom	31	
Scattering by an assemblage of point atoms	32	
Scattering by a periodic array: diffraction	33	
Further properties of Fourier transforms: convolution	38	
Scattering by atoms	42	
Effect of atomic vibrations	43	
Transform of a molecule	49	
Disorder	52	
The crystal as a Fourier series	59	
The Patterson function	63	
2. Internal Symmetry of Crystals	73	
Historical background	73	
Space lattices	74	
Space groups	82	
Space group $P\overline{1}(C_i^1)$	85	
Space group $P2_1/c(C_{2h}^5)$	90	
Space group $P2_{1}^{2}2_{1}^{2}(D_{2}^{4})$	93	
Determination of space group	96	
Intensity statistics	99	
Space groups and molecular symmetry	103	
Molecular packing arrangements	106	
3. Methods of Crystal Structure Analysis	112	
Statement of the problem	112	
Trial-and-error analysis	113	

	Heavy-atom methods	117
	Method of isomorphous replacement	123
	Anomalous scattering: determination of absolute	
	configuration	129
	Direct methods	148
	A simple example	149
	Unitary and normalized structure factors	153
	Equalities and inequalities	156
	Sayre's equation	161
	Probability relationships	162
	Practical application of direct methods	165
	Structure invariants and semi-invariants: origin and	
	enantiomorph specification	172
	Aberrant structure invariants	178
	Summary of direct-method procedures	181
4.	Methods of Crystal Structure Refinement	183
	Structure refinement: the R factor	183
	The difference synthesis	185
	Least-squares analysis	191
	Least-squares analysis in crystal structure refinement	200
	Intrinsic parameter correlation	207
	Constrained refinement	209
	Least-squares weights	213
	Wrong structures	222
5.	Treatment of the Results	225
	Long lists of numbers	225
	Hazards of oblique coordinate systems	226
	Linear transformations	232
	Transformation from triclinic to orthonormal axes	235
	Calculations in Cartesian coordinates	240
	Thermal motion analysis	244
	The Cruickshank model	245
	Effect of libration on apparent intramolecular distances	248
	General treatment of rigid-body vibrations	249
	Nonrigid-body thermal motion analysis	257
	Lattice-dynamical treatment of rigid-body motion	260
	Accuracy of derived parameters	261
6.	Experimental Aspects of X-Ray Analysis	266
	Introductory remarks	266
	Photographic methods	267
	Rotation and oscillation photographs	268

Weissenberg photographs	270
Precession photographs	273
Single-crystal diffractometers	276
The integrated intensity	281
Polarization factor	283
Lorentz factor	284
Absorption	287
Extinction	290
Double reflection	296

PART TWO: MOLECULAR STRUCTURE

7.	Crystal Structure Analysis and Chemistry	301
	Growth of information on molecular structures	301
	Molecular structural formulas	305
	Conformational analysis	312
	Solid-state organic chemistry	319
	Reaction intermediates	323
	Molecular potential energy surfaces	325
	Cis-trans isomerization of amides	328
	From crystal structure data to chemical reaction paths	337
	Linear triatomic species	341
	Bond number relationship	347
	Ligand exchange at tetrahedral cadmium	348
	Tetrahedral molecules and ions	354
	Structural correlation principle	363
	Nucleophilic addition to carbonyl groups	366
	Other structural correlations	384
8.	Electron-Density Distributions in Molecules	391
	Electron-density difference maps	391
	Neutron diffraction	393
	An example: <i>p</i> -nitropyridine- <i>N</i> -oxide	395
	Residual density features in organic molecules	400
	Difference densities by least-squares analysis	406
	Comparison with theoretical deformation densities	409
	Net charges on atoms	412
	Summary and outlook	415
9.	Geometric Constraints in Cyclic Molecules	418
	Geometric constraints	418
	Four-membered rings	423
	Five-membered rings	425

Six-membered rings	431
Six-membered rings and octahedra	436
Other approaches to the flexibility problem	438
Larger rings	439
Bicyclic systems	440
Polycyclic molecules with high symmetry	444
10. Conformational Maps and Space Groups	447
One-dimensional torsional potential functions and line	
groups	447
Two torsional degrees of freedom	450
An example: diphenylmethane	450
Other examples: the frame symmetry group	460
Ligand permutations	463
Three torsional degrees of freedom	466
Triphenylmethane	466
Dibenzyl	475
Trimethylboron	478
Four-dimensional space groups	481
1,1,1-Trichloropentane	483
Tetraphenylmethane and related molecules	484
APPENDICES	
I. A BASIC computer program for calculating interatomic distances and angles and torsion angles from	
crystal coordinates	495
II. A BASIC computer program for calculating Cartesian	
coordinates from internal coordinates	498
Index of Names	503
Index of Subjects	510
much of Subjects	510