
David H. Trevena

Statistische Mechanik

Eine Einführung

Übersetzt von Thomas Filk

Inhaltsverzeichnis

Vorwort von H. N. V. Temperley					
Vorwort des Autors					
1	Hist	orische Einleitung	1		
2	Eini	inige grundlegende Ideen			
	2.1	Einführung	. 5		
	2.2	Makrozustände und Mikrozustände	. 6		
	2.3	Ein System aus unterscheidbaren Teilchen	. 7		
	2.4	Die Boltzmann-Verteilung	. 12		
	2.5	Entropie und die Anzahl der Mikrozustände	. 15		
	2.6	Eine abschließende Zusammenfassung	. 16		
3	Die Boltzmann-Verteilung und damit zusammenhängende				
	The	men	19		
	3.1	Die Konstante α und die Zustandssumme	. 19		
	3.2	Die Konstanten β und k_{B}	. 20		
	3.3	Die Beziehung zwischen der Zustandssumme und anderen thermodynamischen Funktionen	. 22		
	3.4	Entartete Energiezustände	. 24		
	3.5	Die Zustandssumme für das System	. 25		
4	Ein erster Zugang zu einer Gastheorie				
	4.1	Einführung	. 27		
	4.2	Das Problem der "Teilchen in einem Kasten"	. 27		
	4.3	Die Zustandsdichte	. 29		
	4.4	Mehr zur Zustandsdichte	. 31		
	4.5	Einige nützliche Rechnungen	. 32		
	4.6	Die Verteilungsfunktion für ein reales chemisches Gas unter Normalbedingungen	. 33		

5	Eine	detailliertere Behandlung der Gase	37		
	5.1	Symmetrische und antisymmetrische Wellenfunktionen	37		
	5.2	Die Anzahl der Mikrozustände für Fermionen und Bosonen	39		
	5.3	Die Verteilungsfunktionen für Fermionen und Bosonen	41		
	5.4	Das verdünnte Gas: Der klassische Grenzfall	42		
	5.5	Geschlossene und offene Systeme; α und das chemische Potential .	44		
	5.6	Abschließende Zusammenfassung der drei Verteilungsfunktionen .	45		
6	Die Maxwell-Boltzmann-Verteilung für ein einatomiges und ein				
	zweiatomiges Gas 47				
		: Einatomiges Gas	47		
	6.1	Einführung	47		
	6.2	Kurze Zusammenfassung der Verteilung molekularer Geschwindig-	40		
		keiten	48		
	6.3	Die Zustandssumme für ein Maxwell-Boltzmann-Gas	51		
	6.4	Ein Blick auf die Gültigkeit des MB- (d.h. verdünnten oder klas-	52		
	c r	sischen) Grenzfalles	$\frac{52}{52}$		
	6.5	Herleitung der MB-Geschwindigkeitsverteilung			
	6.6	Der Zusammenhang mit der Thermodynamik	53		
	6.7	Vergleich mit den Ergebnissen für lokalisierte Teilchen: Der Faktor N!	56		
	Tail I	E: Zweiatomige Gase	58		
	6.8	Die Zustandssumme für ein zweiatomiges Molekül	58		
	6.9	Die Freie Energie F	59		
	6.10	Die verschiedenen Beiträge zu Z und die anderen thermodynami-	99		
	0.10	schen Funktionen	59		
	6.11	Die gesamte Zustandssumme und die Zustandsgleichung für ein	00		
	0.11	zweiatomiges Gas	62		
	6.12	Die spezifische Wärme eines zweiatomigen Gases	63		
7	Fermi-Dirac-Gase 65				
	7.1	Einführung	65		
	7.2	Die Fermi-Energie	66		
	7.3	Das Elektronengas in einem Metall	67		
	7.4	Die spezifische Wärme von Elektronen	70		
	7.5	Die thermodynamischen Funktionen für ein ideales Fermi-Gas	72		
	7.6	Einige einfache Berechnungen	74		
	7.7	Der Paulische Paramagnetismus	75		
	7.8	Das Problem des flüssigen Heliums	79		
	7.9	Flüssiges ³ He als Fermi-Gas	80		
	7.10	Anwendung auf Halbleiter	81		
	7 11	Zusammenfassung	84		

		Inhaltsverzeichnis	XI
8		Einstein-Gase	85
	8.1	Einführung	
	8.2	Die Bose-Einstein-Kondensation	
	8.3	Die thermodynamischen Funktionen eines idealen Bose-Gases	
	8.4	Anwendung auf ⁴ He	
	8.5	Das Photon-Gas: Die Strahlung eines Schwarzen Körpers	. 93
	8.6	Zusammenfassung	. 95
9	Festk	örper	97
	9.1	Klassische Theorie der spezifischen Wärme von Gittern	. 97
	9.2	Der quantisierte lineare harmonische Oszillator	. 98
	9.3	Die Einsteinsche Theorie für die spezifische Wärme eines	
		Festkörpers	. 100
	9.4	Die Debyesche Theorie	. 101
10	Flüssi	gkeiten	105
	10.1	Einführung	. 105
	10.2	Verschiedene Zugänge zur flüssigen Phase	. 106
	10.3	Die allgemeine Form der intermolekularen Wechselwirkungen in	
		Flüssigkeiten	
	10.4	Die "starre Kugel" und weitere einfache Funktionen	. 111
	10.5	Die Zustandssumme für ein nicht-ideales Gas oder eine Flüssigkeit	111
	10.6	Die Mayersche Virialentwicklung	. 112
	10.7	Der Nutzen der radialen Verteilungsfunktion	. 115
	10.8	Monte-Carlo- und Molekulardynamik-Verfahren	. 117
	10.9	Abschließende Zusammenfassung	. 118
11	Weite	ere verwandte Themen	119
	11.1	Die Relationen $P = 2U/3V$ für ein ideales einatomiges Gas und	
		P = U/3V für ein Photon-Gas	. 119
	11.2	Ein System von Teilchen mit jeweils zwei Energieniveaus;	
		die Schottky-Anomalie	120
	11.3	Die Entropie eines Gemisches aus zwei idealen Gasen	124
12	Ausge	earbeitete Beispiele	127
13	Frage	n mit Antworten für den Studenten	133
			100
An	hang	1: Die Stirlingsche Näherung	139
An	hang	2: Das Ergebnis $\Omega=N!/\prod_j n_j!$ für lokalisierte Teilchen	141
An	hang	3: Verschiedene Integrale	143
An	hang	4: Einige Ergebnisse aus der Thermodynamik	145

Anhang 5: Physikalische Konstanten	149
Weiterführende Literatur	151
Register	155