Optical Properties of III-V Semiconductors

The Influence of Multi-Valley Band Structures

With 143 Figures

Table of Contents

1.	Introduction to Semiconductor Band Structures				
	1.1	Electronic States in Crystalline Solids	1		
		1.1.1 The One-Electron Approximation	1		
		1.1.2 Bloch Waves and the Band Structure Model	3		
	1.2	Band Structure of III-V Semiconductors	6		
	1.3	Some General Properties of Multi-Valley Band Structures	11		
2.	Excitons in Multi-Valley Semiconductors				
	2.1	Basic Properties of Three-Dimensional Excitons	17		
	2.2	Direct-to-Indirect Crossover in Bulk Semiconductors	19		
	2.3	Exciton Dynamics in $Al_xGa_{1-x}As$ Near Crossover	25		
	2.4	Excitons in Low-Dimensional Structures	33		
	2.5	Direct-to-Indirect Transitions in 2D and 1D Structures	36		
3.	Many-Body Effects in Multi-Valley Scenarios				
	3.1	Introduction to Screening in Highly Excited Semiconductors .	41		
	3.2	Band-Gap Renormalization in Bulk Semiconductors	47		
		3.2.1 Time-Resolved Electron–Hole Plasma Luminescence	49		
		3.2.2 The Multi-Valley Model for Band-Gap Renormalization	55		
		3.2.3 Differential Gap Renormalization	65		
	3.3	Gap Renormalization in Low-Dimensional Systems	72		
		3.3.1 Subband Renormalization in Quantum Wells	72		
		3.3.2 Band-Gap Narrowing in Quantum Wires	81		
	3.4	Screening in One-Component Plasmas	83		
	3.5				
		3.5.1 Picosecond Electron–Hole Droplet Formation			
		in Indirect-Gap $Al_xGa_{1-x}As$	103		
			112		
	3.6	Optical Nonlinearities at the Direct Gap			
			119		

XII Table of Contents

4.	Inte	rvalley	Coupling			
	4.1	Theore	etical Considerations			
		4.1.1	Transfer Between Real Band States			
			and Scattering Potentials			
		4.1.2	Transitions Involving Virtual Intermediate States 133			
	4.2	2 Optical Spectroscopy of Intervalley Coupling				
		4.2.1	Timescales of Carrier Dynamics in Semiconductors 134			
		4.2.2	Deformation-Potential Scattering			
		4.2.3	Alloy-Disorder-Induced Intervalley Coupling 144			
		4.2.4	Real-Space Transfer in Type-II Heterostructures 158			
	4.3	Indire	ct Stimulated Emission			
5.	Sun	nmary	and Outlook			
References						
Index						