Open distributed systems

Jon Crowcroft

University College London

Contents

	Preface	iX
	Acknowledgements	xiv
1	What are open distributed systems and what are they for	
11	Introduction	1
1.1	The viewpoints	3
1.2	Transparencies	6
1.5	Central operating system services	8
1.4	Communications support	1/
1.5	Open Communications	16
1.0	Open distributed systems	17
1.7	Objects as a modelling concept	17
1.0	Summary	22
1 10	Summary Exercises	22
1.10		22
2	Modules, communication and concurrency	25
2.1	Introduction	25
2.2	Addressing, naming and routeing	26
2.3	Concurrent systems	29
2.4	Interleaving and true parallelism	31
2.5	Shared resources – problems with concurrency	32
2.6	Mutual exclusion	34
2.7	Consumers, producers and critical regions	34
2.8	Monitors, semaphores and rendezvous	37
2.9	Distributed systems and concurrency	41
2.10	Worked example of networked windows	42
2.11	Remote procedure call	43
2.12	Summary	54
2.13	Exercises	54
2	Real time and reliable systems	55
31	Introduction	55
3.1	The object model and fault transparency	56
2.2	Conventional hardware and coftware reliability	58
3.5	Software in distributed systems	60
25	Contracting for reliability	60
3.5	A palyzing timing constraints	61
37	Transactions	63
3.9	Timestamps	67
3.0	More shout multiple readers/single writer and the object model	60
3 10	Commitment concurrency and recovery (CCP)	71
3 11	Fault tolerance	72
3 12	Object migration	75
3 12	Excention handling	75
3 14	Summary	76
3.15	Exercises	77

4	The nature of security		79
-	with Robert Cole Hewlett-Packard Laboratories Bristol		
11	Threats and protection		80
4.2	Access control and authentication		82
43	Authorization		85
4.5	Access control schemes		85
45	Trust in a secure system		87
4.6	General models of computer security		88
4.0	Cryptography		91
4.7	Key distribution		96
4.0	Practical security approaches?		96
4 10	Summary		97
4 11	Evercises		97
4.11	Excluses		,,
5	Languages and formal methods		99
	with Mark d'Inverno, Westminster University		
5.1	Why protocol description?		99
5.2	Why protocol specification?		99
53	Format and protocol languages		100
54	Protocol validation		101
5.5	Language of temporal ordering specification (LOTOS)		102
5.6	Variables, values and expressions and LOTOS		105
57	Estelle		105
5.8	Communicating sequential processes (CSP)		107
5.9	Introduction to the specification language Z		113
5 10	A multimedia conference specification in Z		115
5 11	Summary		137
5 12	Exercises		137
5.12			107
6	Communications support		139
	with Graham Knight, University College London	· · · · · ·	
61	Introduction		139
6.2	Technological point of view		140
63	Clocks and time in distributed systems		143
6.4	Communications system modelling		144
6 5	Protocols		145
6.6	Service types		147
67	Relationships between services		148
6.8	The ISO reference model		149
6.9	Naming addressing and routeing		153
6 10	Connection-oriented or connectionless?		155
6 11	Programming interfaces		157
6 12	OSI application-layer support for distributed systems		158
6 13	A distributed system example		178
6 14	OSI – a critique		181
6 15	Networked windowing systems		182
6 16	Summary		184
6 17	Exercises		185
0.11			100

7	CORBA – An industrial approach	
	to open distributed computing	187
	Nigel Edwards HP/APM	
7.1	The Object Management Architecture (OMA)	187
7.2	The Common Object Request Broker Architecture (CORBA)	189
7.3	Interoperability	212
7.4	Common Object Services Specification	214
7.5	Common facilities	221
7.6	Some practical issues	222
7.7	Summary	226
8	Modelling and implementing	
	distributed multimedia conferencing	227
	with Mark Handley IICL and Ian Wakeman University of Sussey	
Q 1	Introduction	227
0.1	Multicast requirements for distributed applications	227
0.2	Shared networked objects and windows	227
0.J Q /	Classical IPC usage for multimedia conference control	230
85	Weak RPC	230
8.6	Event-driven approaches	243
87	Related work	245
8.8	The MICE design of conferencing communications channel	250
8.9	Summary	270
8.10	Exercises	270
9	Applications to network management	271
	with David Lewis University College London	
0 1	Introduction	271
9.1	Functions	271
0.2	Concentual architectures	275
9.5	Viewpoints of the architecture	270
9.6	A spects of interoperability	280
97	The single managed-object view	281
9.8	Notifications	283
9.9	Behaviour	283
9.10	Specification of managed-object classes	284
9.11	Registration	284
9.12	The managed object relationships view	285
9.13	Relationships	285
9.14	Relationship definition and representation	287
9.15	The logical distribution view	287
9.16	Peer-to-peer OS relationships	289
9.17	Abstraction	289
9.18	Management hierarchies	290
9.19	Authority domains	290
9.20	The engineering viewpoint	290
9.21	The interoperable interface and the OS	290
9.22	Communication protocols	291
9.23	Management information	292
9.24	Mapping the service onto the architecture	293
9.25	Management protocols	293

9.26 9.27	Applying ODP and CORBA directly to management Distributed systems for managing networks	294 294
9.28	Embedded management functionality	295
9.29	Summary	295
9.30	Exercises	295
10	Distributed file systems	297
	with Nermeen Ismail, University College London	
10.1	Virtual file system model	297
10.2	Consequences of the open model	299
10.3	File (system) naming	299
10.4	Replication	300
10.5	Management	301
10.6	The network file system (NFS)	302
10.7	The Andrew file system (AFS)	307
10.8	Media file system	309
10.9	Security	313
10.10	Summary	314
10.11	Exercises	314
П	Load balancing	315
	with S. Hailes, University College London	
11 1	Introduction	315
11.1	ODP/ANSA migration	315
11.2	Monitoring distributed systems	315
11.5	Migration	320
11.5	Scheduling	338
11.6	Summary	354
11.7	Exercises	354
12	Future lessons and challenges	355
12.1	Introduction	355
12.2	Definition	355
12.3	Lessons and challenges	355
12.4	Micro/nano/maxi kernels - how small is beautiful?	356
12.5	Blocking, synchronous and asynchronous interfaces - easy?	357
12.6	Remote Procedure Call – latent potential?	357
12.7	Is atomic group communication useful?	357
12.8	Shared address spaces and distributed memory models	358
12.9	Client-server paradigm	358
12.10	Unix – just another program?	358
12.11	Is caching at the server good?	359
12.12	Fileserver replication – how many, when?	359
12.13	Message passing – too hard for application programmers?	359
12.14	Client caching – is it a good idea?	359
12.15	Atomicity – useful, but too expensive?	360
12.16	Causal ordering in multi-party communication	360
12.17	Threads and processes – kernel and user space	360
12.18	Thread versus process	361
12.21	Log structured file systems (LFSs)	362
	References	363
	Index	369