Waves Called Solitons

Concepts and Experiments

Second Revised and Enlarged Edition With 135 Figures

Contents

1	Basic	Concepts and the Discovery of Solitons	1		
	1.1	A look at linear and nonlinear signatures	1		
	1.2	Discovery of the solitary wave			
	1.3	Discovery of the soliton	6		
	1.4	The soliton concept in physics	10		
2	Linear Waves in Electrical Transmission Lines				
	2.1	Linear nondispersive waves 1			
	2.2	Sinusoidal-wave characteristics	15		
		2.2.1 Wave energy density and power	18		
	2.3	The group-velocity concept	19		
	2.4	Linear dispersive waves	21		
		2.4.1 Dispersive transmission lines	21		
		2.4.2 Electrical network	23		
		2.4.3 The weakly dispersive limit	26		
	2.5	Evolution of a wavepacket envelope			
	2.6	Dispersion-induced wavepacket broadening			
	Apper	ndix 2A. General solution for the envelope evolution	34		
	Apper	ndix 2B. Evolution of the envelope of a Gaussian wavepacket	35		
3	Solito	ons in Nonlinear Transmission Lines	37		
	3.1	Nonlinear and dispersionless transmission lines	37		
	3.2	Combined effects of dispersion and nonlinearity			
	3.3	Electrical solitary waves and pulse solitons			
	3.4	Laboratory experiments on pulse solitons	46		
		3.4.1 Experimental arrangement	46		
		3.4.2 Series of experiments	48		
	3.5	Experiments with a pocket version of the electrical network	52		

	3.6	Nonlinea	r transmission lines in the microwave range	56		
	Appen	dix 3A.	Calculation of the effect of nonlinearity			
			on wave propagation	58		
	Appen	dix 3B.	Derivation of the solitary-wave solution	60		
	Appen	dix 3C.	Derivation of the KdV equation and its soliton solution	62		
	Appen	dix 3D.	Details of the electronics:			
			switch driver and pulse generator	64		
4	More	on Tra	nsmission-Line Solitons	65		
	4.1	Lattice se	olitons in the electrical Toda network	65		
		4.1.1	Lattice solitons	67		
	4.2	Experime	ents on lattice solitons	68		
		4.2.1	Collisions of two lattice solitons			
			moving in opposite directions	70		
		4.2.2	The Fermi-Pasta-Ulam recurrence phenomenon	70		
	4.3	Periodic	wavetrains in transmission lines	71		
		4.3.1	The solitary wave limit and sinusoidal limit			
			of the cnoidal wave	72		
	4.4		ed waves and the nonlinear dispersion relation	72		
	4.5	Envelope	e and hole solitons	74		
		4.5.1	Experiments on envelope and hole solitons	76		
	4.6	Modulat	ional instability	77		
	4.7	Laborato	ry experiments on modulational instability	82		
		4.7.1	Model equations	82		
		4.7.2	Experiments	84		
	4.8	Modulati	onal instability of two coupled waves	86		
	Appendix 4A. Periodic wavetrain solutions					
	Appen	ndix 4B.	The Jacobi elliptic functions	90		
		4B.1	Asymptotic limits	91		
		4B.2	Derivatives and integrals	93		
	Appen	ndix 4C.	Envelope and hole soliton solutions	93		
5	Hydrodynamic Solitons					
	5.1	Equation	ns for surface water waves	98		
		5.1.1	Reduced fluid equations	99		
	5.2	Small-ar	nplitude surface gravity waves	100		

5.3	Lin	ear sh	allow- and deep-water waves	103
	5.3	.1	Shallow-water waves	103
	5.3	.2	Deep-water waves	104
5.4	Sur	face-te	ension effects: capillary waves	105
5.5	Sol	itons i	n shallow water	107
5.6	Exţ	perime	ents on solitons in shallow water	110
	5.6	.1	Experimental arrangement	111
	5.6	.2	Experiments	111
5.7	Sto	kes wa	aves and soliton wavepackets in deep water	115
	5.7	.1	Stokes waves	115
	5.7	.2	Soliton wavepackets	116
	5.7	.3	Experiments on solitons in deep water	117
5.8	Exp	perime	ents on modulational instability in deep water	118
Appen	ndix	5A.	Basic equations of fluid mechanics	121
		5A.1	Conservation of mass	121
		5A.2	Conservation of momentum	123
		5A.3	Conservation of entropy	124
Appen	ndix	5B.	Basic definitions and approximations	124
		5B.1	Streamline	124
		5B.2	Irrotational and incompressible flow	125
		5B.3	Two-dimensional flow: the stream function	126
		5B.4	Boundary conditions	128
		5B.5	Surface tension	129
Appen	ndix	5C.	Derivation of the KdV equation:	
			the perturbative approach	130
Appen	ndix	5D.	Derivation of the nonlinear dispersion relation	133
Appen	ndix	5E.	Details of the probes and the electronics	136
Mech	ani	cal S	olitons	137
6.1	An	exper	imental mechanical transmisssion line	137
	6.1	.1	General description of the line	137
	6.1	.2	Construction of the line	139
6.2	Me	chanic	cal kink solitons	139
	6.2	.1	Linear waves in the low-amplitude limit	140
	6.2	.2	Large amplitude waves: kink solitons	141
	6.2	.3	Lorentz contraction of the kink solitons	143

6

6.3	Particle	properties of the kink solitons	145
6.4	Kink-ki	nk and kink-antikink collisions	146
6.5	Breather	solitons	148
6.6	Experim	ents on kinks and breathers	150
6.7	Helical v	vaves, or kink array	151
6.8	Dissipati	ve effects	153
6.9	Envelope	e solitons	155
6.10	Pocket v	ersion of the pendulum chain, lattice effects	157
Appe	ndix 6A.	Kink soliton and antikink soliton solutions	159
Appe	ndix 6B.	Calculation of the energy	
		and the mass of a kink soliton	160
Appe	ndix 6C.	Solutions for kink-kink and	
		kink-antikink collisions, and breathers	161
	6C.1	Kink solutions	163
	6C.2	Kink-kink collisions	163
	6C.3	Breather solitons	164
	6C.4	Kink–antikink collision	165
Appe	ndix 6D.	Solutions for helical waves	166
Flux	one in L	osephson Transmission Lines	168
7.1		phson effect in a short junction	168
/.1	7.1.1	The small Josephson junction	169
7.2		g Josephson junction as a transmission line	171
7.3	-	ve effects	175
7.4	-	ental observations of fluxons	177
7.4	7.4.1	Indirect observation	177
	7.4.2	Direct observation	178
	7.4.3	Lattice effects	180
Anne	endix 7A.	Josephson equations	180
nppc	<i></i>	Josephion equations	100
Solit	ons in O	ptical Fibers	182
8.1	Optical-f	fiber characteristics	182
	8.1.1	Linear dispersive effects	183
	8.1.2	Nonlinear effects	185
	8.1.3	Effect of losses	186
8.2	Wave-er	velope propagation	187

	8.3	Bright and dark solitons				
		8.3.1	Bright solitons	190		
		8.3.2	Dark solitons	192		
	8.4	Experime	ents on optical solitons	193		
	8.5	Perturbations and soliton communications				
		8.5.1	Effect of losses	195		
		8.5.2	Soliton communications	196		
	8.6	Modulati	onal instability of coupled waves	197		
	8.7	A look at	t quantum optical solitons	198		
	Appen	ndix 8A.	Electromagnetic equations in a nonlinear medium	199		
9	The S	Soliton C	Concept in Lattice Dynamics	202		
	9.1	The one-	dimensional lattice in the continuum approximation	202		
	9.2	The quas	i-continuum approximation for the monatomic lattice	207		
	9.3	The Toda	a lattice	209		
	9.4	Envelope	e solitons and localized modes	210		
	9.5	The one-dimensional lattice with transverse nonlinear modes 2				
	9.6	Motion of dislocations in a one-dimensional crystal 2				
	9.7	The one-dimensional lattice model				
		for struct	ural phase transitions	216		
		9.7.1	The order-disorder transition	218		
		9.7.2	The displacive transition	219		
	Apper	ndix 9A.	Solutions for transverse displacements	221		
	Apper	ndix 9B.	Kink soliton or domain-wall solutions	223		
10	A Lo	ok at So	me Remarkable Mathematical Techniques	225		
	10.1	Lax equa	ations and the inverse scattering transform method	225		
		10.1.1	The Fourier-transform method for linear equations	226		
		10.1.2	The Lax pair for nonlinear evolution equations	227		
	10.2	The KdV	⁷ equation and the spectral problem	229		
	10.3	Time evolution of the scattering data				
		10.3.1	Discrete eigenvalues	230		
		10.3.2	Continuous spectrum	232		
	10.4	The inve	rse scattering problem	233		
		10.4.1	Discrete spectrum only: soliton solution	234		
	10.5	Response	e of the KdV model to an initial disturbance	236		

	10.5.1	The delta function potential	236	
	10.5.2	The rectangular potential well	237	
	10.5.3	The sech-squared potential well	237	
10.6	5 The inve	rse scattering transform for the NLS equation	238	
10.7	7 The Hiro	ta method for the KdV equation	239	
10.8	B The Hiro	ta method for the NLS equation	243	
Referen	ces	>	247	
Subject Index				