Unimolecular Reactions SECOND EDITION

KENNETH A. HOLBROOK

School of Chemistry University of Hull

MICHAEL J. PILLING

School of Chemistry University of Leeds

STRUAN H. ROBERTSON

School of Chemistry University of Leeds

JOHN WILEY & SONS

Chichester · New York · Brisbane · Toronto · Singapore

Contents

1	General Introduction	1
	1.1 Canonical transition state theory (CTST)	5
	1.2 Variational transition state theory (VTST)	7
	References	8
2	Early Theories	9
	2.1 Historical development	9
	2.2 The Lindemann theory	10
	2.3 Comparison of Lindemann theory with experiment	12
	2.4 The Hinshelwood modification	14
	2.5 Comparison of Hinshelwood–Lindemann theory with	
	experiment	18
	2.6 The further development of unimolecular reaction rate	
	theories	20
	2.7 Slater's harmonic theory	21
	2.8 The Rice-Ramsperger-Kassel theories	31
	2.9 Development and application of the RRK theories	35
	References	38
3	Basic RRKM theory	39
	3.1 The RRKM reaction scheme	39
	3.2 Classification of energies and degrees of freedom	41
	3.3 Terminology for energies	42
	3.4 Expression for $\delta k_{1(E^* \rightarrow E^* + \delta E^*)}/k_2$	43
	3.5 Expression for $k_a(E^*)$	45
	3.6 RRKM expression for k_{uni}	50
	3.7 The high-pressure limit	51
	3.8 The low-pressure limit	53
	3.9 Statistical factors	56
	3.10 Improved treatment of adiabatic rotations	59
	3.11 The quantities $W(E_{vr}^+) \equiv \sum_{E_{vr}^+=0}^{E_{vr}^+} P(E_{vr}^+)$ and $\rho(E^*)$	64
	3.12 Assumptions of the basic RRKM theory	69
	References	75

4	The Evaluation of Sums and Densities of Molecular Quantum States	79
	4.1 Separation of vibrational and rotational degrees of freedom	80
	4.2 Direct count of vibrational states	82
	4.3 Monte Carlo methods	87
	4.4 Classical treatment of vibrational states and derived	
	semiclassical approximations	89
	4.5 Classical treatment of rotational state distributions	101
	4.6 Combined vibrational-rotational systems	110
	References	113

7

5	Numerical Application of the RRKM theory	115
	5.1 Calculation of activation parameters for a postulated model	
	of the reaction	115
	5.2 Specification of a model for the reaction	117
	5.3 The RRKM integration	
	5.4 Application of RRKM theory to the isomerisation of	
	1,1-dichlorocyclopropane	130
	5.5 Sensitivity of the RRKM calculation to computational	
	details and features of the model	
	References	143

6	Reactions with Loose Transition States	145
	6.1 Correlation of vibrational and rotational motion	145
	6.2 The minimum sum of states criterion	148
	6.3 Flexible transition state theory (FTST)	156
	6.4 Statistical adiabatic channel model (SACM)	161
	6.5 Canonical rate constants	164
	6.6 Canonical flexible transition state theory (CFTST)	168
	6.7 Inverse Laplace Transformation (ILT)	173
	References	178

7	Master Equation Analysis of Collisional Energy Transfer	177
	7.1 Systems with continuous state distributions	178
	7.2 Energy-grained master equation (EGME)	180
	7.3 Chemical activation	184
	7.4 Equilibration	190
	7.5 Isomerisation	193
	7.6 Solution of the energy-grained master equation	197
	7.7 Diffusion models of unimolecular reactions	207
	References	213

CON	TENTS

8		215
		216
		221
	8.3 Pressure dependence-analytical representation of the fall-off	
		222
	References	232
9		235
		235
	9.2 Intramolecular energy transfer	254
		263
10	Kinetic Isotope Effects in Unimolecular Reactions	269
	10.1 General discussion of isotope effects	270
		274
	10.3 Secondary kinetic isotope effects on $k_a(E^*)$ (theory	
	and experiment)	275
	10.4 Primary kinetic isotope effects on $k_a(E^*)$ (theory and	
		277
	10.5 Isotope effects in thermal unimolecular reactions	
		282
	References	288
11	Experimental Data	291
	•	291
		327
		348
		357
		365
Apr	endix 1 Nomenclature	379
		383
		391
		399
	endix 5 Monte Carlo Algorithm for the Evaluation of	.,,
14		401
Apr		405
14	and a second of the cher By Brannen muster offerior (11)	
Ind	x	407