Metal Complexes in Aqueous Solutions

Arthur E. Martell

Texas A&M University College Station, Texas

Robert D. Hancock

IBC Advanced Technologies American Fork, Utah

PLENUM PRESS • NEW YORK AND LONDON

Contents

Chapter 1 Introductory Overview

1.1	Backgro	und of the Study of Complex-Formation in Aqueous Solution	1
1.2	Metal Ions in Solution, and Metal Complexes		5
	1.2.1	Metal ions in aqueous solution	6
	1.2.2	Trends in the periodic table	9
1.3	Steric St	rain in Complex Formation	12

Chapter 2 Factors Governing the Formation of Complexes with Unidentate Ligands in Aqueous Solution. Some General Considerations

2.1	The Role of the Solvent		15
	2.1.1	Protonation reactions in the gas-phase	15
	2.1.2	Complex-formation reactions of metal ions in the gas-phase	21
	2.1.3	Reaction rates in the gas-phase	24
2.2	Linear 1	Free Energy Relationships (LFER)	26
2.3	Ligand	Field Theory and Metal to Ligand Bonding	28
2.4	Patterns	s in Lewis Acid-Base Behavior in Aqueous Solution	34
2.5	The Coordinating Tendencies of Different Donor Groups		40
	2.5.1	The neutral oxygen donor	40
	2.5.2	The negatively charged oxygen donor	44
	2.5.3	The neutral saturated nitrogen donor	49
	2.5.4	Unsaturated nitrogen donors	55
	2.5.5	Ligands with heavier donor atoms S, Se, P, As	55

Chapter 3 Chelating Ligands

3.1	The Chelate Effect	63
3.2	The Standard Reference State and the Chelate Effect	64
3.3	Equations for Predicting the Stability of Complexes of Chelating Ligands	65
3.4	Rule of Average Environment for Chelating Ligands	70
3.5	The Size of the Chelate Ring and Complex Stability	73
3.6	The Geometry of the Chelate Ring, and Preferred Metal Ion Sizes	
3.7	Chelate Rings of Other Sizes	82
	3.7.1 Chelate rings larger than six membered	82
3.8	More Highly Preorganized Chelating Ligands	87
3.9	The Effect of Mixtures of Chelate Rings of Different Sizes on Complex Stability	92
3.10	Steric and Inductive Effects in Chelating Ligands	93

Chapt	ter 4	Complexes of Macrocycles and Other More Highly Preorganized Ligands	
4.1	The Th	hermodynamics of the Macrocyclic and Cryptate Effects	98
4.2	The Pr Nitrog	referred Geometry of Chelate Rings Containing Neutral Oxygen and gen Donors	101
4.3	The O	rigin of the Macrocyclic Effect	105
4.4	Induct	ive Effects in Complexes of Macrocyclic Ligands	108
4.5	The M	lacrocyclic Effect in Mixed Donor Macrocycles	111
4.6	The Se	electivity of Macrocyclic Ligands for Metal Ions	112
	4.6.1	The metal ion selectivities of the tetraaza macrocycles	113
	4.6.2	The metal ion selectivities of the crown ethers	120
	4.6.3	The selectivity patterns of triaza and pentaaza macrocycles	125
4.7	Macro	cycles with Pendent Donor Groups	127
	4.7.1	Triaza macrocycles with pendent donor groups	127
	4.7.2	Ligands based on cyclen, that have pendent donors	131
	4.7.3	Ligands based on hexadentate macrocycles, that have pendent	
		donor groups	132
4.8	The C	ryptands	134
4.9	Macrocycles with Pendent Donor Groups Attached via the Carbon Atoms of the Bridging Groups		
4.10	More	Highly Preorganized Macrocycles	138
4.11	Binuc	leating Macrocycles	140
4.12	Concl	usions	142

Chapter 5 Medical Applications of Metal Complexes

5.1	Applications of Ligand Design Principles		
	5.1.1	Hard metal ions of biomedical interest (Li ⁺ , Rb ⁺ , Sr ²⁺ , Y ³⁺ , Sm ³⁺ Gd ³⁺ , Dy ³⁺ , Ho ³⁺ , Yb ³⁺ , Fe ³⁺ , Pu ⁴⁺ , Al ³⁺ , Ga ³⁺)	, 151
	5.1.2	Metal ions of biomedical interest, that are intermediate in HSA (Ni ²⁺ , Cu ²⁺ , In ³⁺ , Pb ²⁺ , Bi ²⁺)	л В 154
	5.1.3	Soft metal ions of biomedical interest (Cd(II), Hg(II), Tl(I), Pt Au(I), Au(III), and possibly Tc in its +1 to +7 oxidation states	(II), s)154
5.2	Iron Ove	erload	155
	5.2.1	The hydroxypyridinones	159
5.3	Aluminu	ım	160
5.4	Nickel		160
5.5	Copper1		161
5.6	Plutonium and the Actinides		161
5.7	Uranium		162
5.8	Toxic Heavy Metal Ions1		163
5.9	Cadmium		
5.10	Lead		164

5.11	Arsenic		165
5.12	Mercury		
5.13	General Summary		
5.14	Diagnost	ic Radiopharmaceuticals Based on Ga(III) and In(III) Complexe	s166
	5.14.1	Synthesis and evaluation of new low molecular weight ligands	168
	5.14.2	Hydroxypyridinones	174
	5.14.3	Bifunctional chelates of Ga(III) and In(III)	175
5.15	Techneti	um	177
	5.15.1	Technetium(VII)	178
	5.15.2	Technetium(VI)	178
	5.15.3	Technetium(V)	
	5.15.4	Technetium(IV)	
	5.15.5	Technetium(III)	182
	5.15.6	Technetium(II)	184
	5.15.7	Technetium(I)	184
5.16	Rhenium	1	185
	5.16.1	Development of rhenium-radiopharmaceuticals of therapeutic value	
5.17	Magnetic	c Resonance Imaging (MRI)	
	5.17.1	Factors influencing the water-relaxation ability of paramagneti	C
	5 17 2	Complexes	107
	5 17 3	Magnetic moment of the paramagnetic complex	188
	5.17.4	Modulation of magnetic interactions between unpaired	
	011/11	electrons and nuclei	
	5.17.5	Number of coordinated water molecules	188
	5.17.6	Rate of water exchange	188
	5.17.7	Metal-to-nucleus distance	189
	5.17.8	Metal chelates recently investigated for magnetic resonance imaging	
	5.17.9	Hepatobiliary MRI contrast agents	191
	5.17.10	New MRI contrast agents	191
Chap	ter 6 T	he Selectivity of Ligands of Biological Interest for Metal	
-	I	ons in Aqueous Solution. Some Implications for Biology	
6.1	Significa	nce of HSAB Ideas for Zinc-Containing Metalloenzymes	199
6.2	Chelate I	Ring Size and Metal Ion Selectivity	203
6.3	The Neu	tral Oxygen Donor	207
6.4	The Neg	ative Oxygen Donor	210
6.5	The Neu	tral Nitrogen Donor	212
6.6	Sulfur D	onors	213

Chap	ter 7 S	Stability Constants and Their Measurement	
7.1	Introduc	tion	217
7.2	Early W	ork	217
7.3	Recent V	Work	218
7.4	The Stat	bility Constant	220
7.5	pH and j	p[H]	222
7.6	Ca(II)-E	DTA Complexes	223
	7.6.1	Stability constants for Ca(II)-EDTA	223
7.7	Species	Distribution Diagrams	225
7.8	Experimental Methods for Measuring Complex Equilibria		
	7.8.1	Absorbance methods	228
7.9	Specific	Metal Ion Electrodes	229
7.10	Polarography and the Study of Solution Equilibria		
7.11	Other M	ethods	236
7.12	Competition Methods		
	7.12.1	Ligand-ligand competition by potentiometric methods	236
	7.12.2	Spectrophotometric determinations of competition constants	237
7.13	Amphot	eric Metal Ions	238
7.14	Critical Stability Constants and Their Selection		
	7.14.1	Minimum requirements for equilibrium data	239
7.15	Develop	oment of a Complete Metal Complex Database	240
Index	ζ		245