Radiowave Propagation Over Ground Software

Z. Wu

Department of Electrical Engineering and Electronics UMIST UK

and

T.S.M. Maclean Department of Electrical Engineering University of Edinburgh UK

Contents

1	Introd	luction	1
	1.1	What the software provides	2
	1.2	How the package is installed	3
2	Contents of manual and allowed input values		
	2.1	Propagation in free space	5
	2.2	Propagation over planar conducting ground	5
	2.3	Propagation over flat homogeneous ground	5
	2.4	Propagation over flat inhomogeneous ground	6
	2.5	Propagation over irregular ground	6
	2.6	Propagation from a vertically polarized source over	
		perfectly conducting spherical earth	6
	2.7	Propagation from a horizontally polarized source	
		over perfectly conducting spherical earth	7
	2.8	Propagation from a vertically polarized source over	
		lossy spherical earth	7
	2.9	Propagation from a horizontally polarized source	
		over lossy spherical earth	4
	2.10	Propagation over inhomogeneous spherical earth	. 8
	2.11	Tabulated summary of models: limits and validities	8
3	Runn	ing the software	10
4	Quick	results for Part 1	14
5	Full r	esults for Part 1	19
	5.1	Model 1. Propagation in free space for any	
		frequency	19
		Fields in terms of radiated power	22
		Illustrative numerical example	23
	5.2	Model 2. Propagation over perfectly conducting	
		planar ground for any frequency	32
		Fields in terms of radiated power	35
		Effect of transmitting power gain	36
		Illustrative numerical example	37

8	Glossa	ry of terms	132
7	Messages		131
		Illustrative numerical example	123
	0.0	sphere – VECE	123
	6.5	Model 5. Propagation over lossy inhomogeneous	122
		Illustrative numerical example	120
	0.4	ground – HECE	120
	64	Model 4 Propagation over lossy spherical	120
		ground – VECE Illustrative numerical example	118
	6.3	Model 3. Propagation over lossy spherical	110
	()	Illustrative numerical example	112
		spherical ground – HECE	109
	6.2	Model 2. Propagation over perfectly conducting	4.00
	<i></i>	optics for range variation	105
		Illustrative numerical example using geometrical	
		for height variation	98
		Illustrative numerical example using residue series	
		for range variation	91
		Illustrative numerical example using residue series	
		spherical ground – VECE	89
	6.1	Model 1. Propagation over perfectly conducting	
6	Full re	sults for Part 2	89
		Illustrative numerical examples	76
		Effect of transmitting power gain	76
		Fields in terms of radiated power	76
	5.5	Model 5. Propagation over irregular ground	74
		Ground profile input from a file	74
		Illustrative numerical example	64
		Effect of transmitting power gain	64
		Fields in terms of radiated power	64
	5.4	Model 4. Propagation over flat inhomogeneous ground	62
		Attenuation factor	61
		Illustrative numerical example	52
		Effect of transmitting power gain	52
	5.5	Fields in terms of radiated power	4J 52
	53	Model 3 Propagation over flat homogeneous ground	45

7