Hydrogen in Metals III

Properties and Applications

Edited by H. Wipf

With Contributions by R.G. Barnes P. Dantzer H. Grabert D.K. Ross H.R. Schober H. Vehoff H. Wipf

With 117 Figures

Contents

1.	IntroductionBy H. Wipf (With 1 Figure)1References3
2.	Theory of Tunneling and Diffusion of Light Interstitials in Metals
	By H. Grabert and H.R. Schober (With 7 Figures) 5
	2.1 Background 5
	2.2 Statics and Dynamics of Hydrogen in Metals
	2.3 Hamiltonian of the Hydrogen-Phonon System 13
	2.4 Hydrogen Diffusion at Elevated Temperatures 17
	2.5 Hamiltonian for Two-Level Systems in Metals 24
	2.5.1 Reduced Density Matrix
	2.5.2 Effective Electronic Density of States
	in a Normalconducting Metal 27
	2.5.3 Effective Electronic Density of States
	in a Superconducting Metal 28
	2.5.4 Effective Phononic Density of States
	2.5.5 Effective Spectral Density
	2.5.6 Equivalent Spin-Boson Hamiltonian 30
	2.6 Time Evolution of the Two-Level System
	2.6.1 Unitary Transformation
	2.6.2 Equation of Motion 31
	2.6.3 Memory Function
	2.7 Incoherent Tunneling 33
	2.7.1 Hopping Rate
	2.7.2 Electron Dominated Region
	2.7.3 Phonon Dominated Region
	2.8 Coherent Tunneling 39
	2.8.1 Low-Temperature Memory Function
	2.8.2 Structure Factor for Neutron Scattering
	2.8.3 Crossover from Coherent to Incoherent Tunneling 41
	2.8.4 Effect of an Asymmetry Energy 44
	2.8.5 Coherent Tunneling in a Superconducting Metal 45
	2.9 Conclusions
	References

3.	Diffusion of Hydrogen in Metals	
	By H. Wipf (With 24 Figures) 51	l
	3.1 Theoretical Background	2
	3.1.1 Chemical Diffusion and Self Diffusion	2
	3.1.2 Correlation Factor	
	and Velocity Correlation Functions	4
	3.1.3 External Forces	5
	3.1.4 Jump Diffusion	7
	3.1.5 The Influence of Traps	8
	3.2. The Diffusion Coefficient of Hydrogen in Pure Metals	
	and Some Representative Allovs)
	3.2.1 Diffusion in fcc Metals)
	(A) Copper Silver Gold and Platinum	,)
	(B) Aluminum 60	'n
	(C) Nickel (C)	í
	(D) Palladium 67	2
	3.2.2 Diffusion in bcc Metals	3
	$(A) Iron \qquad \qquad$	1
	(R) Vanadium Nichium and Tantalum	5
	(C) Molybdenum and Tungsten	2
	3.2.3 Diffusion in Hevagonal Metals) 3
	(A) Lutetium 70	'n
	(A) Education (\mathbf{R}) (B) Vttrium (\mathbf{R})) 1
	(C) Titanium Zirconium and Hafnium 77	7
	3.24 Diffusion in Allovs	2
	3.2.5 Diffusion in Metallic Glasses	, 1
	3.2.5 Diffusion in inclaime Glasses	т
	of Tranned Hydrogen Interstitials	6
	3.3.1 Oxygon Nitrogen and Carbon Trans in Nichium 74	6 6
	(A) Hydrogen Motion	0
	(A) Hydrogen Motion Potwoon Two Nearest Neighbor Sites	7
	(P) Hydrogen Jumps	/
	(b) Hydrogen Jumps Detwoen Nonneerest Neighber Tren Sites	\mathbf{r}
	2.2.2 Other Tren Systems	2
	5.5.2 Other Trap Systems	5 6
	References	0
Λ	Nuclear Magnetic Resonance in Metal Hydrogen Systems	
ч.	By R. G. Barnes (With 16 Figures and 1 Table)	z
	A 1 Background	2 2
	4.1 Dackground	5 5
	4.2 Structural Information	5 5
	4.2.2 Electric Que drug ele Internetione	s c
	4.2. Lectric Quadrupole Interactions	0 7
	4.3 Mouton and Diffusion of Hydrogen	1
	4.5.1 Mean Kesidence Times and Kelaxation Kates	ð o
	(A) Magnetic Dipolar Relaxation	ð 2
	(B) Distributions of Motional Parameters 10.	5 1
	(C) Electric Quadrupole Relaxation 104	4

	4.3.2 Other Relaxation Mechanisms	107
	(A) Relaxation by Paramagnetic Impurity Ions, R_{1p} .	107
	(B) Cross-Relaxation	
	to Ouadrupolar Metal Nuclei, R_{12}	110
	(C) Anomalous High-Temperature Relaxation, R_{1x} .	112
	4.3.3 Measurement of Hydrogen Diffusion	114
	4.4 Electronic Structure	114
	4.5 Applications	119
	4.5.1 Binary Metal-Hydrogen Systems	119
	(A) Group III Systems	119
	Solid Solution (a) Phase	119
	Dihydride Phase	121
	Magnetic Rare-Earths: Rare-Earth Nuclei	122
	Magnetic Rare-Earths: Hydrogen Nuclei	123
	(B) Group IV Systems	124
	Solid Solution (a) Phase	124
	Dihydride Phases	125
	(C) Group V Systems	127
	Solid Solution (α and α') Phases	127
	Hydride Phases	131
	(D) Group VI Systems	133
	(E) Palladium-Hydrogen	133
	(E) Actinide Hydrides	135
	4 5 2 Intermetallic Hydrides	136
	(A) LaNic-H and Related Systems	136
	(B) TiFe-H and Related Systems	137
	(C) Laves Phase Hydrides	137
	(D) Other Intermetallic Hydrides	139
	4.5.3 Random Alloy and Amorphous Systems	140
	(A) Random Allov Systems	140
	(B) Amorphous Systems	141
	4.6 Summary	142
	References	144
5.	Neutron Scattering Studies of Metal Hydrogen Systems	
	By D.K. Ross (With 16 Figures)	153
	5.1 The Neutron Scattering Method	154
	5.1.1 Advantages of the Neutron Scattering Technique	
	for Investigating Metal-Hydrogen Systems	154
	5.1.2 Basic Theory of Neutron Scattering	154
	5.1.3 Sources of Thermal Neutrons	157
	5.2 Theory of Quasi-elastic Neutron Scattering	157
	5.2.1 Van Hove Correlation Functions	
	and the Intermediate Scattering Functions	157
	5.2.2 Long-Range Tracer and Chemical Diffusion	158
	5.2.3 Incoherent Quasi-elastic Neutron Scattering	_
	from a Lattice Gas: The Chudley-Elliott Model	159

IX

	5.2.4	Extension of the Chudley-Elliott Model	
		to Non-Bravais Lattices	160
	5.2.5	Incoherent Quasi-elastic Scattering from a Lattice Gas	
		at Finite Concentrations	161
	5.2.6	Diffusion in a Lattice with Traps	163
	5.2.7	Coherent Quasi-elastic Scattering from a Non-	
		interacting Lattice Gas at Arbitrary Concentrations	165
	5.2.8	Coherent Quasi-elastic Neutron Scattering	
		from an Interacting Lattice Gas	167
	5.2.9	The Effect of Lattice Stress	
		on Coherent Quasi-elastic Neutron Scattering	168
5.3	Expe	rimental Methods	
	of M	easuring Quasi-elastic Neutron Scattering	170
	5.3.1	General Features	
		of Quasi-elastic Neutron Scattering Spectrometry	170
	5.3.2	Direct Geometry Time-of-Flight Spectrometers	172
	5.3.3	Indirect Geometry Time-of-Flight Spectrometers	173
	5.3.4	Back-Scattering Spectrometers	174
	5.3.5	Spin Polarization Analysers	175
	5.3.6	The Neutron Spin-Echo Technique	176
5.4	Quas	si-elastic Neutron Scattering Measurements	
	on M	Ietal-Hydrogen Systems	178
	5.4.1	The Palladium-Hydrogen System	178
	5.4.2	Hydrogen in the bcc Metals: The Niobium,	
		Tantalum, and Vanadium Systems	179
	5.4.3	Quasi-elastic Scattering	
		from the Niobium-Deuterium System	180
	5.4.4	Quasi-elastic Scattering from Hydrogen Diffusing	
		in a Simple Hexagonal Lattice	181
	5.4.5	Diffusion in Hydrides: Titanium Dihydride	
		and Yttrium Dihydride	182
5.5	Theo	bry of Inelastic Neutron Scattering	184
	5.5.1	Incoherent Inelastic Neutron Scattering	
		from an Atom in a Harmonic Potential:	
		The Einstein Oscillator	184
	5.5.2	Perturbation Theory Analysis of Anharmonic	
		and Anisotropic Effects	
		in Inelastic Neutron Scattering	
		from Hydrogen in Metals	185
	5.5.3	The Parabolic Term in the Potential	
		at Asymmetric Sites Calculated	
		from Parametrized Pairwise Potentials	190
	5.5.4	Incoherent Inelastic Neutron Scattering from	
		Stoichiometric and Non-stoichiometric Hydrides	192
	5.5.5	Coherent Inelastic Scattering from Metal Deuterides .	193
5.6	The	Deep Inelastic Neutron Scattering Technique	193
5.7	Expe	erimental Methods	
	of M	leasuring Inelastic Neutron Scattering	195

5.7.1 General Features	
of Inelastic Neutron Scattering Spectrometry	195
5.7.2 TFXA, an Indirect Geometry Time-Focusing	
Spectrometer on a Pulsed Neutron Source	196
5.7.3 MARI, a Direct Geometry Chopper Spectrometer	
on a Pulsed Neutron Source	197
5.8 Inelastic Neutron Scattering Measurements	
on Metal-Hydrogen Systems	198
5.8.1 fcc Hydrides with Hydrogen	
in the Octahedral Sites	198
5.8.2 bcc Systems: Nb/H, V/H, and Ta/H	202
5.8.3 Hydrides with the Fluorite Structures	205
5.8.4 fcc Metals with Both Tetrahedral	
and Octahedral Sites Occupied	206
5.8.5 hcp Metals	
with Extensive Hydrogen Solubility Ranges	206
5.9 Conclusions	209
References	210

6. Hydrogen Related Material Problems

By H. Vehoff (With 41 Figures and 4 Tables)	. 215
6.1 Phenomenology of Hydrogen Damage	. 215
6.2 Degradation of Mechanical Properties	
Due to High-Pressure Hydrogen	. 219
6.2.1 Hydrogen Entry from the Liquid Phase	. 221
(A) Hydrogen Entry at Crack Tips	. 223
6.2.2 Hydrogen Attack	. 225
6.2.3 Hydrides	. 227
(A) Hydride Formation at Crack Tips	. 228
6.2.4 Formation and Growth of Cavities	. 228
6.3 Hydrogen Assisted Crack Growth	. 230
6.3.1 Equilibrium Aspects of Hydrogen Damage	. 230
(A) Adsorption of Hydrogen	. 230
(B) Elastic Interactions of Hydrogen	
with the Metal Lattice	. 232
(C) Hydrogen-Defect Interaction	. 233
6.3.2 Hydrogen Trapping at Crack Tips	. 234
(A) Equilibrium Models of Crack Growth	. 239
6.3.3 Kinetic Aspects of Hydrogen Damage	. 244
(A) Kinetic Models of Crack Growth	. 245
(B) Single Crystals	. 246
(C) Commercial Alloys	. 250
(D) Adsorption of Oxygen	. 253
6.4 Failure Mechanisms	. 255
6.4.1 Interfacial Fracture	. 255
(A) Segregation	. 258
(B) Decohesion of Segregated Interfaces	. 259

	6.4.2 Ductile/Brittle Transition	264
	(A) Effect of Hydrogen	267
	(B) Hydrogen Enhanced Local Plasticity	267
	(C) Hydrogen Enhanced Brittle Fracture	268
	(D) Intermetallics	269
	6.4.3 Atomistic Computer Simulations	
	of Hydrogen Embrittlement	271
	6.5 Conclusions	273
	References	274
		271
7	Metal-Hydride Technology: A Critical Review	
	By P. Dantzer (With 13 Figures and 5 Tables)	279
	7.1 Outline	280
	7.2 Current Problems in Hydride Applications	281
	7.2 Current Properties	282
	7.2.1 Thermo Chemical Departivity	202
	(A) Thermodynamics	202
	(A) Thermodynamics	202
	(B) Chemical Contamination $\dots \dots \dots$	207
	(C) Stability and Cycling	288
	7.3.2 Transport Properties	290
	(A) Kinetics Survey	290
	(B) Thermal Properties and Confinement	293
	(C) Dynamic Properties	298
	7.4 Applications	300
	7.4.1 Hydrogen Storage	300
	(A) Large and Medium Sized Stationary Storage	301
	(B) Small Stationary Storage	302
	(C) Mobile Transportation	303
	7.4.2 Chemical Selectivity	305
	(A) Getters	305
	(B) Purification	306
	(C) Separation	308
	Industrial	308
	Isotopic	310
	7.4.3 Hydrides and Thermodynamic Devices	312
	(A) Thermochemical Hydride Compressors	313
	Principle	313
	Development	314
	Uses of Hydride Compressors	315
	(B) Heat Management: Hydride Chemical Engines	316
	Thermodynamic Principles	317
	Allow Selection	517
	Alloy Scientian Tomporature Danges	210
	and Expedice reinperature Ranges	201
	Prototype Development	321
	Dynamics of Hydride Beds, Experiments,	222
	Wodels and Problems	323
	7.4.4 High-Temperature Applications	524

7.4.5 Sensors and Detectors	325
7.4.6 Batteries	325
(A) Principle	326
(B) Development	326
7.4.7 Fuel Cells	329
7.5 Conclusions	329
References	331
Subject Index	341